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Abstract

We study infinite series expansions for the Riemann xi function Ξ(t) in three specific families of orthogonal

polynomials: (1) the Hermite polynomials; (2) the symmetric Meixner-Pollaczek polynomials P
(3/4)
n (x;π/2);

and (3) the continuous Hahn polynomials pn
(
x; 3

4 ,
3
4 ,

3
4 ,

3
4

)
. The first expansion was discussed in earlier work

by Turán, and the other two expansions are new. For each of the three expansions, we derive formulas for
the coefficients, show that they appear with alternating signs, derive formulas for their asymptotic behavior,
and derive additional interesting properties and relationships. We also apply some of the same techniques
to prove a new asymptotic formula for the Taylor coefficients of the Riemann xi function.

Our results continue and expand the program of research initiated in the 1950s by Turán, who proposed
using the Hermite expansion of the Riemann xi function as a tool to gain insight into the location of the
Riemann zeta zeros. We also uncover a connection between Turán’s ideas and the separate program of
research involving the so-called De Bruijn–Newman constant. Most significantly, the phenomena associated
with the new expansions in the Meixner-Pollaczek and continuous Hahn polynomial families suggest that
those expansions may be even more natural tools than the Hermite expansion for approaching the Riemann
hypothesis and related questions.
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Key words and phrases. Riemann xi function, Riemann zeta function, Riemann hypothesis, orthogonal polynomials, De

Bruijn-Newman constant, asymptotic analysis.
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CHAPTER 1

Introduction

1.1. Background

This paper concerns the study of certain infinite series expansions for the Riemann xi function ξ(s).
Recall that ξ(s) is defined in terms of Riemann’s zeta function ζ(s) by

(1.1) ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s) (s ∈ C).

ξ(s) is an entire function and satisfies the functional equation

(1.2) ξ(1− s) = ξ(s).

It is convenient and customary to perform a change of variables, denoting

(1.3) Ξ(t) = ξ

(
1

2
+ it

)
(t ∈ C),

a function that (in keeping with convention) will also be referred to as the Riemann xi function. The
functional equation (1.2) then becomes the statement that Ξ(t) is an even function. The xi function has
been a key tool in the study of the complex-analytic properties of ζ(s) and, crucially, the Riemann Hypothesis
(RH). Two additional standard properties of Ξ(t) are that it takes real values on the real line, and that RH
can be stated as the claim that all the zeros of Ξ(t) are real. [85]

1.1.1. Some well-known representations of the Riemann xi function. Much research on the
zeta function has been based on studying various series and integral representations of ζ(s), ξ(s) and Ξ(t),
in the hope that this might provide information about the location of their zeros. For example, it is natural
to investigate the sequence of coefficients in the Taylor expansion

(1.4) ξ(s) =

∞∑
n=0

a2n

(
s− 1

2

)2n

.

Riemann himself derived in his seminal 1859 paper a formula for the coefficients a2n [27, p. 17], which in
our notation reads as

(1.5) a2n =
1

22n−1(2n)!

∫ ∞
1

ω(x)x−3/4(log x)2n dx,

(where ω(x) is defined below in (1.7)), and which plays a small role in the theory. The study of the numbers
a2n remains an active area of research [19, 22, 32, 73, 74, 75]—we will also prove a result of our own
about them in Section 6.1—but, disappointingly, the Taylor expansion (1.4) has not provided much insight
into the location of the zeros of ζ(s).

Another important way to represent ξ(s), also considered by Riemann, is as a Mellin transform, or—
which is equivalent through a standard change of variables—as a Fourier transform. Specifically, define
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2 1. INTRODUCTION

functions θ(x), ω(x),Φ(x) by

θ(x) =

∞∑
n=−∞

e−πn
2x = 1 + 2

∞∑
n=1

e−πn
2x (x > 0),(1.6)

ω(x) =
1

2

(
2x2θ′′(x) + 3xθ′(x)

)
=

∞∑
n=1

(2π2n4x2 − 3πn2x)e−πn
2x (x > 0),(1.7)

Φ(x) = 2ex/2ω(e2x) = 2

∞∑
n=1

(
2π2n4e9x/2 − 3πn2e5x/2

)
exp

(
−πn2e2x

)
(x ∈ R).(1.8)

Then it is well-known that θ(x), ω(x),Φ(x) are positive functions, satisfy the functional equations (all equiv-
alent to each other, as well as to (1.2))

(1.9) θ

(
1

x

)
=
√
x θ(x), ω

(
1

x

)
=
√
xω(x), Φ (−x) = Φ(x),

and that ξ(s) has the Mellin transform representation

(1.10) ξ(s) =

∫ ∞
0

ω(x)xs/2−1 dx,

and the Fourier transform representation

(1.11) Ξ(t) =

∫ ∞
−∞

Φ(x)eitx dx.

The right-hand side of (1.11) is also frequently written in equivalent form as a cosine transform, that is,
replacing the eitx term with cos(tx), which is valid since Φ(x) is an even function. For additional background,
see [27, 85].

1.1.2. Pólya’s attack on RH and its offshoots by De Bruijn, Newman and others. Pólya in
the 1920s began an ambitious line of attack on RH in a series of papers [67, 68, 69, 70] (see also [85, Ch. X])
in which he investigated sufficient conditions for an entire function represented as the Fourier transform of
a positive even function to have all its zeros lie on the real line. Pólya’s ideas have been quite influential
and found important applications in areas such as statistical physics (see [51, 55], [71, pp. 424–426]). One

particular result that proved consequential is Pólya’s discovery that the factor eλx
2

, where λ > 0 is constant,
is (to use a term apparently coined by De Bruijn [15]) a so-called universal factor. That is to say, Pólya’s
theorem states that if an entire function G(z) is expressed as the Fourier transform of a function F (x) of a
real variable, and all the zeros of G(z) are real, then, under certain assumptions of rapid decay on F (x) (see

[15] for details), the zeros of the Fourier transform of F (x)eλx
2

are also all real. This discovery spurred much
follow-up work by De Bruijn [15], Newman [54] and others [23, 24, 25, 26, 44, 56, 57, 72, 76, 78, 83]
on the subject of what came to be referred to as the De Bruijn-Newman constant; the rough idea is to
launch an attack on RH by generalizing the Fourier transform (1.11) through the addition of the “universal

factor” eλx
2

inside the integral, and to study the set of real λ’s for which the resulting entire function has
only real zeros. See Section 2.5 where some additional details are discussed, and see [14, Ch. 5], [55] for
accessible overviews of the subject.

1.1.3. Turán’s approach. Next, we survey another attack on RH that is the closest one conceptually
to our current work, proposed by Pál Turán. In a 1950 address to the Hungarian Academy of Sciences
[87] and follow-up papers [88, 89], Turán took a novel look at the problem, starting by re-examining the
idea of looking at the Taylor expansion (1.4) and then analyzing why it fails to lead to useful insights and
how one might try to improve on it. He argued that the coefficients in the Taylor expansion of an entire
function provide the wrong sort of information about the zeros of the function, being in general well-suited
for estimating the distance of the zeros from the origin, but poorly adapted for the purpose of telling whether
the zeros lie on the real line. As a heuristic explanation, he pointed out that the level curves of the power
functions z 7→ zn are concentric circles, and argued that one must therefore look instead for series expansions
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of the Riemann xi function in functions whose level curves approximate straight lines running parallel to the
real axis. He then argued that the Hermite polynomials

Hn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)

are such a family of functions, and proceeded to prove several results demonstrating his main thesis that the
coefficients in the Fourier series expansion of a function in Hermite polynomials can in many cases provide
useful information about the distance of the zeros of the function from the real line.

Turán also made the important observation that the expansion of Ξ(t) in Hermite polynomials has a
rather nice structure, being expressible in the form

(1.12) Ξ(t) =

∞∑
n=0

(−1)nb2nH2n(t)

in which, he pointed out, the coefficients b2n are given by the formula1

(1.13) b2n =
1

22n(2n)!

∫ ∞
−∞

x2ne−
x2

4 Φ(x) dx,

and in particular are positive numbers.
Note that the Hermite polynomials have the symmetry Hn(−x) = (−1)nHn(x), so, as with the case of

the Taylor expansion (1.4), the presence of only even-indexed coefficients in (1.12) is a manifestation of the
functional equation (1.9), and hence serves as another indication that the expansion (1.12) is a somewhat
natural one to consider. (Of course, the same would be true for any other family of even functions; this is
obviously a weak criterion for naturalness.)

Turán focused most of his attention on Hermite expansions of polynomials rather than of entire functions
like Ξ(t). His ideas on locating polynomial zeros using knowledge of the coefficients in their Hermite expan-
sions appear to have been quite influential, and have inspired many subsequent fruitful investigations into the
relationship between the expansion of a polynomial in Hermite polynomials and other orthogonal polynomial
families, and the location of the zeros of the polynomial. See the papers [9, 13, 37, 38, 39, 40, 63, 79].

By contrast, Turán’s specific observation about the expansion (1.12) of Ξ(t) does not seem to have led to
any meaningful follow-up work. We are not aware of any studies of the behavior of the coefficients b2n, nor
of any attempts to determine whether the Hermite polynomials are the only—or even the most natural—
family of polynomials in which it is worthwhile to expand the Riemann xi function (but see Section 1.3 for
discussion of some related literature).

1.2. Our new results: Turán’s program revisited and extended; expansion of Ξ(t) in new
orthogonal polynomial bases

This paper can be thought of as a natural continuation of the program of research initiated by Turán
in his 1950 address. One full chapter—Chapter 2—is dedicated to the study of the Hermite expansion
(1.12), answering several questions that arise quite naturally from Turán’s work and that have not yet been
addressed in the literature. For example, in Theorem 2.7 we derive an asymptotic formula for the coefficients
b2n.

It is however in later chapters that it will be revealed that Turán’s vision of understanding the Riemann xi
function by studying its expansion in Hermite polynomials was too narrow in its scope, since it turns out that
there is a wealth of new and interesting results related to the notion of expanding Ξ(t) in different families
of orthogonal polynomials. Two very specific orthogonal polynomial families appear to suggest themselves
as being especially natural and possessing of excellent properties, and it is those that are conceptually the
main focus of this paper, being the subject of Chapters 3–5. These families are the Meixner-Pollaczek

polynomials P
(λ)
n (x;φ) with the specific parameter values φ = π/2, λ = 3

4 ; and the continuous Hahn

1Actually Turán’s formula in [89] appears to contain a small numerical error, differing from (1.13) by a factor of π
2

.



4 1. INTRODUCTION

polynomials pn(x; a, b, c, d) with the specific parameter values a = b = c = d = 3
4 . We denote these families

of polynomials by (fn)∞n=0 and (gn)∞n=0, respectively; they are given explicitly by the hypergeometric formulas

fn(x) =
(3/2)n
n!

in2F1

(
−n, 3

4
+ ix;

3

2
; 2

)
,(1.14)

gn(x) = in(n+ 1) 3F2

(
−n, n+ 2,

3

4
+ ix;

3

2
,

3

2
; 1

)
(1.15)

(where (3/2)n is a Pochhammer symbol), and form systems of polynomials that are orthogonal with respect

to the weight functions
∣∣Γ ( 3

4 + ix
)∣∣2 and

∣∣Γ ( 3
4 + ix

)∣∣4 on R, respectively.
As our analysis will show, the expansions of Ξ(t) in the polynomial families (fn)∞n=0 and (gn)∞n=0 have

forms that are pleasingly similar to the Hermite expansion (1.12), namely

Ξ(t) =

∞∑
n=0

(−1)nc2nf2n

(
t

2

)
,(1.16)

Ξ(t) =

∞∑
n=0

(−1)nd2ng2n

(
t

2

)
,(1.17)

where, importantly, the coefficients c2n and d2n again turn out to be positive numbers. Much more than this
can be said, and in Chapters 3–5 we undertake a comprehensive analysis of the meaning of the expansions
(1.16)–(1.17), the relationship between them, and the behavior of the coefficients c2n and d2n. Among other
results, we will prove that the coefficients satisfy the two asymptotic formulas

c2n ∼ 16
√

2π3/2
√
n exp

(
−4
√
πn
)
,(1.18)

d2n ∼
(

128× 21/3π2/3e−2π/3

√
3

)
n4/3 exp

(
−3(4π)1/3n2/3

)
(1.19)

as n→∞. See Theorems 3.2 and 5.3 for precise statements, including explicit rate of convergence estimates.
There are many other results. What follows is a brief summary of the main results proved in each

chapter.

• Chapter 2:
– We prove a theorem (Theorem 2.1 in Section 2.1) on the existence of the Hermite expansion,

including the fact that the expansion converges throughout the complex plane and an effective
rate of convergence estimate.

– We prove an asymptotic formula for the coefficients b2n (Theorem 2.7 in Section 2.4).
– We prove a theorem (Theorem 2.9 in Section 2.5) that reveals a connection between Turán’s

ideas on the Hermite expansion and the separate thread of research on the topic of the De
Bruijn-Newman constant described in the previous section. The idea is that the so-called
Pólya-De Bruijn flow—the one-parameter family of approximations to the Riemann xi function

obtained by introducing the factor eλx
2

to the Fourier transform in (1.11)—shows up in a
natural way also when taking the Hermite expansion (1.12) and using it to separately construct
a family of approximations inspired by the standard construction of Poisson kernels in the
theory of orthogonal polynomials.

• Chapter 3:
– We develop the basic theory of the expansion (1.16) of Ξ(t) in the polynomials fn, deriving for-

mulas for the coefficients, showing that they alternate in sign, and proving that the expansion
converges throughout the complex plane, including an effective rate of convergence estimate
(Theorem 3.1 in Section 3.1).

– We prove the asymptotic formula given in (1.18) above for the coefficients c2n (Theorem 3.2
in Section 3.1).

– We study the Poisson flow associated with the fn-expansion, by analogy with the results of
Chapter 2, and show that this flow is the Fourier transform of a family of functions with
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compact support; that it evolves according to an interesting dynamical law—a differential
difference equation; and that, in contrast to the Poisson flow associated with the Hermite
expansion, this flow does not preserve the reality of zeros of a polynomial in either direction
of the time parameter.

• Chapter 4:
– We develop an alternative point of view that reinterprets the fn-expansion (1.16) developed

in Chapter 3 as arising (through the action of the Mellin transform) from an expansion of the
elementary function

d2

dr2

(r
4

coth(πr)
)

= −π
2

1

sinh2(πr)
+
π2r

2

cosh(πr)

sinh3(πr)
,

in an orthogonal basis of eigenfunctions of the radial Fourier transform in R3, a family of

functions which can be defined in terms of the Laguerre polynomials L
1/2
n (x).

– We introduce and study the properties of several more special functions, including a function
ν̃(t), defined as a certain integral transform of the function ω(x), that is shown to be a
generating function for the coefficient sequence cn, and will later play a key role in Chapter 5.

• Chapter 5:
– We develop the basic theory of the expansion of Ξ(t) in the polynomials gn, deriving formu-

las for the coefficients, showing that they alternate in sign, and proving that the expansion
converges throughout the complex plane, including an effective rate of convergence estimate.
(Theorem 5.2 in Section 5.1).

– We prove the asymptotic formula given in (1.19) above for the coefficients d2n (Theorem 5.3
in Section 5.1).

– We show in Sections 5.4–5.5 that, analogously to the results of Chapter 4, the gn-expansion
also affords a reinterpretation as arising, through the Mellin transform, from the expansion
of the function ν̃(t) introduced in Chapter 4 in yet another family of orthogonal polynomials,
the Chebyshev polynomials of the second kind.

• Chapter 6:
This chapter contains a few additional results that enhance and supplement the developments

in the earlier chapters.

– We apply the asymptotic analysis techniques we developed in Chapter 2 to prove an asymptotic
formula for the Taylor coefficients a2n of the Riemann xi function (Theorem 6.1 in Section 6.1).

– We study the function ω̃(x), a “centered” version of the function ω(x) that is first introduced in
Section 4.8. We show that ω̃(x) relates to the expansion (1.16) in several interesting ways, and
give an explicit description of its sequence of Taylor coefficient (Theorem 6.3 in Section 6.2)
in terms of a recently studied integer sequence.

• Appendix A:
This appendix contains a summary of mostly known properties of several families of orthogonal

polynomials. In Section A.6 we prove two new summation identities relating the two polynomial
families (fn)∞n=0 and (gn)∞n=0.

1.3. Previous work involving the polynomials fn

Our work on the Hermite expansion of the Riemann xi function is, as mentioned above, a natural
continuation of Turán’s work, and also relates to the existing literature on the De Bruijn-Newman constant.
By contrast, our results on the expansion of the Riemann xi function in the polynomial families fn and gn
in Chapters 3–5 do not appear to follow up on any established line of research. It seems worth mentioning
however that the polynomials fn did in fact make an appearance in a few earlier works in contexts involving
the Riemann zeta and xi functions.
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The earliest such work we are aware of is the paper by Bump and Ng [17], which discusses polynomials
that are (up to a trivial reparametrization) the polynomials fn in connection with some Mellin transform
calculations related to the zeta function. The follow-up papers by Bump et al. [16] and Kurlberg [47] discuss
these polynomials further, in particular interpreting their property of having only real zeros in terms of a
phenomenon that the authors term the “local Riemann hypothesis.” The idea of using these polynomials as
a basis in which to expand the Riemann xi function (or any other function) does not appear in these papers,
but they seem nonetheless to be the first works that contain hints that the polynomials fn may hold some
significance for analytic number theory.

In another paper [49] (see also [48]), Kuznetsov actually does consider an expansion in the polynomial
basis fn(t/2)—the same basis we use for our expansion of Ξ(t)—of a modified version of the Riemann xi
function, namely the function e−πt/4Ξ(t), and finds formulas for the coefficients in the expansion in terms of
the Taylor coefficients of an elementary function. Kuznetsov’s result gives yet more clues as to the special
role played in the theory of the Riemann xi function by the polynomials fn. It is however unclear to us how
his results relate to ours.

Finally, in a related direction, Inoue, apparently motivated by the work of Kuznetsov, studies in a recent
preprint [36] the expansion of the completed zeta function π−s/2Γ(s/2)ζ(s) in the polynomials fn(t/2), and
proves convergence of the expansion in the critical strip.

1.4. How to read this paper

The main part of this paper consists of Chapters 2–5. These chapters are arranged in two conceptually
distinct parts: Chapter 2, which deals with the Hermite expansion of the Riemann xi function and its
connection to the De Bruijn-Newman constant, forms the first part; and Chapters 3–5, which develop the
theory of the expansion of the Riemann xi function in the orthogonal polynomial families (fn)∞n=0 and
(gn)∞n=0, form the second. The second part is largely independent of the first, so it would be practical for
a reader to start reading directly from Chapter 3 and only refer back to Chapter 2 as needed on a few
occasions.

Following those chapters, we prove some additional results in Chapter 6, and conclude in Chapter 7 with
some final remarks.

The work makes heavy use of known properties of several classical, and less classical, families of orthogo-
nal polynomials: the Chebyshev polynomials of the second kind, Hermite polynomials, Laguerre polynomials,
Meixner-Pollaczek polynomials, and continuous Hahn polynomials. Appendix A contains reference sections
summarizing the relevant properties of each of these families, and ends with a section in which we prove a
new pair of identities relating the polynomial families (fn)∞n=0 and (gn)∞n=0.

We assume the reader is familiar with the basic theory of orthogonal polynomials, as described, e.g., in
Chapters 2–3 of Szegő’s classical book [82] on the subject. We also assume familiarity with standard special
functions such as the Euler gamma function Γ(s) and Gauss hypergeometric function 2F1(a, b; c; z) (see [2]),
and of course with basic results and facts about the Riemann zeta function [27]. For background on Mellin
transforms, of which we make extensive use, the reader is invited to refer to [58].

1.5. Acknowledgements

The author is grateful to Jim Pitman for many helpful comments and references, and for pointing out a
simpler approach to proving Proposition 4.18 than the one used in an earlier version of this paper.



CHAPTER 2

The Hermite expansion of Ξ(t)

The goal of this chapter is to expand on Turán’s work in [87, 88, 89] on the series expansion of Ξ(t) in
Hermite polynomials. In Section 2.1 we state a precise version of Turán’s claims about the existence of the
expansion, showing that it holds on the entire complex plane and giving a quantitative rate of convergence
estimate. This is proved in Section 2.3. In Section 2.4 we prove an asymptotic formula for the coefficients
b2n appearing in the expansion. In Section 2.5 we show how the Hermite expansion leads naturally to a
one-parameter family of approximations to the Riemann xi function, which we will show is (up to a trivial
transformation) the same family studied in the works of De Bruijn, Newman and subsequent authors on
what came to be known as the De Bruijn-Newman constant.

2.1. The basic convergence result for the Hermite expansion

Following Turán [89], we define numbers (bn)∞n=0 by

(2.1) bn =
1

2nn!

∫ ∞
−∞

xne−
x2

4 Φ(x) dx

with Φ(x) defined in (1.8). Since Φ(x) is even and positive, we see that b2n+1 = 0 and b2n > 0 for all n ≥ 0.
The following result is a more precise version of Turán’s remarks in [87] about the expansion of Ξ(t) in
Hermite polynomials.

Theorem 2.1 (Hermite expansion of Ξ(t)). The Riemann xi function has the infinite series representa-
tion

(2.2) Ξ(t) =

∞∑
n=0

(−1)nb2nH2n(t),

which converges uniformly on compacts for all t ∈ C. More precisely, for any compact set K ⊂ C there exist
constants C1, C2 > 0 depending on K such that

(2.3)

∣∣∣∣∣Ξ(t)−
N∑
n=0

(−1)nb2nH2n(t)

∣∣∣∣∣ ≤ C1e
−C2N logN

holds for all N ≥ 1 and t ∈ K.

We note for the record the unsurprising fact that the coefficients b2n can also be computed as Fourier
coefficients of Ξ(t) associated with the orthonormal basis of Hermite polynomials in the function space

L2(R, e−t2 dt).

Corollary 2.2. An alternative expression for the coefficients b2n is

(2.4) b2n =
(−1)n√
π22n(2n)!

∫ ∞
−∞

Ξ(t)e−t
2

H2n(t) dt.

We give the easy proof of Corollary 2.2 at the end of the next section following the proof of Theorem 2.1.

7
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2.2. Preliminaries

Recall the easy fact that the series (1.7)–(1.8) defining ω(x) and Φ(x) are asymptotically dominated by
their first summands as x → ∞, and that this remains true if the series are summed starting at m = 2.
This leads to the following standard estimates (with the second one also relying on (1.9)), which will be used
several times in this and the following chapters.

Lemma 2.3. The functions ω(x) and Φ(x) satisfy the asymptotic estimates

ω(x) = O
(
x2e−πx

)
as x→∞,(2.5)

ω(x) = O
(
x−5/2e−π/x

)
as x→ 0+,(2.6)

ω(x)− (2π2x2 − 3πx)e−πx = O
(
x2e−4πx

)
as x→∞,(2.7)

Φ(x) = O

(
exp

(
9x

2
− πe2x

))
as x→∞,(2.8)

and

Φ(x)− 2
(

2π2e9x/2 − 3πe5x/2
)

exp
(
−πe2x

)
(2.9)

= O

(
exp

(
9x

2
− 4πe2x

))
as x→∞,

2.3. Proof of Theorem 2.1

We start by deriving an easy (and far from sharp, but sufficient for our purposes) bound on the rate of
growth of Hn(t) as a function of n.

Lemma 2.4. The Hermite polynomials satisfy the bound

(2.10) |Hn(t)| ≤ C exp

(
3

4
n log n

)
for all n ≥ 1, uniformly as t ranges over any compact set K ⊂ C, with C > 0 being a constant that depends
on K but not on n.

Proof. Fix the compact set K, and denote M = 2 maxt∈K |t|. Let N0 be a positive integer whose value
will be fixed shortly. Let C > 0 be a constant for which (2.10) holds for all t ∈ K and 1 ≤ n ≤ N0. We
prove by induction that the inequality holds for all n ≥ 1, using as the induction base the case n = N0. For
the inductive step, let n ≥ N0 and assume that we have proved all cases up to the nth case. Then for t ∈ K
we can bound |Hn+1(t)| using the recurrence relation (A.11) for the Hermite polynomials, which, together
with the inductive hypothesis, gives that

|Hn+1(t)| ≤ 2|t| · |Hn(t)|+ 2n|Hn−1(t)|

≤MC exp

(
3

4
n log n

)
+ 2Cn exp

(
3

4
(n− 1) log(n− 1)

)
= C exp

(
3

4
n log n+ log(M)

)
+ C exp

(
3

4
(n− 1) log(n− 1) + log(2n)

)
.

We see that it is easy to complete the induction by fixing N0 to be large enough as a function of M ,
specifically setting, say, N0 = max(128, d(2M)4/3e). With this definition we then get (remembering the
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assumption n ≥ N0) that

|Hn+1(t)| ≤ C exp

(
3

4
(n+ 1) log n− log 2

)
+ C exp

(
3

4
(n+ 1) log(n− 1)− log 2

)
≤ C

2
exp

(
3

4
(n+ 1) log(n+ 1)

)
+
C

2
exp

(
3

4
(n+ 1) log(n+ 1)

)
= C exp

(
3

4
(n+ 1) log(n+ 1)

)
,

which finishes the proof. �

Define the Lambert W -function to be the unique increasing function W : [0,∞)→ [0,∞) satisfying the
equation

W (xex) = x.

In what follows, we will make use of the following asymptotic formula for W (x) for large x. The result
is a weaker version of eq. (4.19) in [21].

Theorem 2.5 (Corless et al. [21]). The asymptotic behavior of W (x) as x→∞ is given by

(2.11) W (x) = log x− log log x+
log log x

log x
+O

((
log log x

log x

)2
)
.

The Lambert W -function and its asymptotics will be quite important for our analysis. A hint of why
this is so can already be glimpsed in the proof of the following technical lemma.

Lemma 2.6. For any number B ≥ 1 there is a constant C > 0 such that∫ ∞
0

xn exp (−Bex) dx ≤ exp

[
n log log n− n log log n

log n
− (logB + 1)

n

log n
+ C

n(log log n)2

(log n)2

]
(2.12)

for all n ≥ 3.

Proof. Denote the integral on the left-hand side of (2.12) by In. It is convenient to rewrite this integral
as

In =

∫ ∞
0

exp(ψn(x)) dx,

where we denote

(2.13) ψn(x) = n log x−Bex.

To obtain an effective bound on this integral, it is natural to seek the point where ψn(x) is maximized.
Examining its derivative ψ′n(x) = n

x −Be
x, we see that is positive for x positive and close to 0, negative for

large values of x, and crosses zero when

n

x
−Bex = 0 ⇐⇒ xex =

n

B
,

an equation that has a unique solution, which we denote xn, that is expressible in terms of the Lambert
W -function, namely as

xn = W
( n
B

)
.
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Thus xn is the unique global maximum point of ψn(x). By (2.11), the asymptotic behavior of xn for large
n (with B fixed) is given by

xn = log
( n
B

)
− log log

( n
B

)
+

log log
(
n
B

)
log
(
n
B

) +O

( log log
(
n
B

)
log
(
n
B

) )2
(2.14)

= (log n− logB)−

(
log log n− logB

log n
+O

((
logB

log n

)2
))

+

(
log log n− logB

logn +O

((
logB
logn

)2
))

log n− logB
+O

((
log log n

log n

)2
)

= log n− log log n− logB +
logB

log n
+

log log n

log n
+O

((
log log n

log n

)2
)

(n→∞).

Denote An = ψn(xn), and observe that we can use the defining relation xne
xn = n

B for xn to rewrite An in
the form

An = n log xn −Bexn = n log (xne
xn)− nxn −

B

xn
(xne

xn)(2.15)

= n log
( n
B

)
− nxn −

n

xn
= n

(
log n− logB − xn −

1

xn

)
.

This form for An makes it straightforward to derive an asymptotic formula for An: first, estimate the term
1/xn separately as

1

xn
=

1

log n− log log n− logB +O
(

log logn
logn

)(2.16)

=
1

log n

(
1− log log n

log n
− logB

log n
+O

(
log log n

log n

))−1

=
1

log n
+O

(
log log n

(log n)2

)
.

Then inserting (2.14) and (2.16) into (2.15) gives that

(2.17) An = n log log n− n log log n

log n
− (logB + 1)

n

log n
+O

(
n(log log n)2

(log n)2

)
(n→∞).

We can now use these estimates to bound the integral In. First, split it into two parts, writing it as

In = I
(1)
n + I

(2)
n , where we denote

I(1)
n =

∫ 2 logn

0

exp(ψn(x)) dx, I(2)
n =

∫ ∞
2 logn

exp(ψn(x)) dx.

Since ψn(x) ≤ An for all x > 0, for the first integral we have the trivial bound

I(1)
n ≤ 2 log n · eAn = exp

[
n log log n− n log log n

log n
− (logB + 1)

n

log n
+O

(
n(log log n)2

(log n)2

)]
.(2.18)

To bound the second integral, observe that ψn(x) is a concave function (since its second derivative is every-
where negative), so in particular it is bounded from above by its tangent line at x = 2 log n; that is, we have
the inequality

ψn(x) ≤ ψn(2 log n) + ψ′n(2 log n)(x− 2 log n) (x > 0).

The constants ψn(2 log n), ψ′n(2 log n) in this inequality satisfy, for n large enough,

ψn(2 log n) = n log(2 log n)−Bn2 ≤ −B
2
n2 ≤ −1

2
n2,

ψ′n(2 log n) =
n

2 log n
−Bn2 ≤ −B

2
n2 ≤ −1

2
n2.
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This then implies that, again for large n, we have

I(2)
n ≤

∫ ∞
2 logn

exp (ψn(2 log n) + ψ′n(2 log n)(x− 2 log n)) dx(2.19)

= exp (ψn(2 log n))

∫ ∞
0

exp (ψ′n(2 log n)t) dt

=
1

−ψ′n(2 log n)
exp (ψn(2 log n)) ≤ 2

n2
e−n

2/2 = O(1).

Combining the two bounds (2.18) and (2.19) gives the claimed bound (2.12). �

We are ready to prove (2.3). First, consider the following slightly informal calculation that essentially
explains how the expansion (2.2) arises out of the definition (2.1) of the coefficients bn. Recalling the formula
(A.13) for the generating function for the Hermite polynomials, we have that

∞∑
n=0

(−1)nb2nH2n(t) =

∞∑
n=0

inbnHn(t) =

∞∑
n=0

in

2nn!

∫ ∞
−∞

xne−
x2

4 Φ(x) dx ·Hn(t)(2.20)

=

∫ ∞
−∞

( ∞∑
n=0

in

2nn!
xnHn(t)

)
e−

x2

4 Φ(x) dx

=

∫ ∞
−∞

exp

(
2t · ix

2
−
(
ix

2

)2
)
e−

x2

4 Φ(x) dx =

∫ ∞
−∞

eitxΦ(x) dx = Ξ(t),

which is (2.2). Note that at the heart of this calculation is the simple identity

(2.21) eitx = e−
x2

4

∞∑
n=0

inxn

2nn!
Hn(t),

a trivial consequence of (A.13), which expands the Fourier transform integration kernel eitx as an infinite
series in the Hermite polynomials. Thus, to get the more precise statement (2.3), all that’s left to do is to
perform the same calculation a bit more carefully, using the results of Lemmas 2.4 and 2.6 to get more explicit
error bounds when summing this infinite series and integrating. Namely, using (2.21) we can estimate the
left-hand side of (2.3) as∣∣∣∣∣Ξ(t)−

N∑
n=0

(−1)nb2nH2n(t)

∣∣∣∣∣ =

∣∣∣∣∣Ξ(t)−
2N∑
n=0

inbnHn(t)

∣∣∣∣∣(2.22)

=

∣∣∣∣∣
∫ ∞
−∞

Φ(x)

(
eitx − e− x

2

4

2N∑
n=0

inxn

2nn!
Hn(t)

)
dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ ∞
−∞

Φ(x)e−
x2

4

∞∑
n=2N+1

inxn

2nn!
Hn(t) dx

∣∣∣∣∣
≤

∞∑
n=2N+1

1

2nn!

(∫ ∞
−∞

Φ(x)e−
x2

4 |x|n dx
)
|Hn(t)|

=

∞∑
n=2N+1

1

2n−1n!

(∫ ∞
0

Φ(x)e−
x2

4 xn dx

)
|Hn(t)|

≤
∞∑

n=2N+1

1

2n−1n!
C exp

(
3

4
n log n

)∫ ∞
0

Φ(x)e−
x2

4 xn dx,

for all t ranging over some fixed compact set K ⊂ C, and where in the last step we invoked Lemma 2.4, with
C denoting the positive constant given by that lemma (depending on the compact set K).
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Now, since Φ(x) = O
(
exp

(
−3e2x

))
as x → ∞ by (2.8), we can use Lemma 2.6 with B = 3 to bound

the integral in the last sum, and therefore conclude that this sum in (2.22) is bounded from above by

C

∞∑
n=2N+1

1

2nn!
exp

(
3

4
n log n

)
× 1

2n
exp

(
n log log n− n log log n

log n
+O

(
n

log n

))
.

By Stirling’s formula this is O
(
exp

(
− 1

5N logN
))

, which is the bound we need. The proof of Theorem 2.1
is complete. �

Proof of Corollary 2.2. The Hermite polynomials form an orthogonal basis of the Hilbert space

L2(R, e−t2 dt). By Lemma 2.6 we also get an upper bound for the coefficients b2n (which will be superseded
by a more precise asymptotic result in the next section, but is still useful), namely the statement that

b2n ≤
C

22n(2n)!
exp (2n log log(2n))

for some constant C > 0 and all n ≥ 3. Together with the fact that the squared L2-norm of Hn(t) is
√
π2nn!

(see (A.10)), this implies that the infinite series on the right-hand side of (2.2) converges in the sense of the

function space L2(R, e−t2 dt) to an element of this space. Since L2-convergence implies almost everywhere
convergence along a subsequence, the L2-limit must be equal to the pointwise limit, that is, the function
Ξ(t). Thus, the relation (2.2) holds in the sense of L2, and it follows that the coefficients in the expansion
can be extracted in the standard way as inner products in the L2-space, which (again because of (A.10))
leads to the formula (2.4). �

2.4. An asymptotic formula for the coefficients b2n

We now refine our analysis of the Hermite expansion by deriving an asymptotic formula for the coefficients
b2n. These asymptotics are most simply expressed in terms of the Lambert W -function.

Theorem 2.7 (Asymptotic formula for the coefficients b2n). The coefficients b2n satisfy the asymptotic
formula

b2n =

(
1 +O

(
log log n

log n

))
π1/4

24n− 5
2 (2n)!

(
2n

log(2n)

)7/4

(2.23)

× exp

[
2n

(
log

(
2n

π

)
−W

(
2n

π

)
− 1

W
(

2n
π

))− 1

16
W

(
2n

π

)2
]

as n→∞.

The appearance of the non-elementary, implicitly-defined function W (x) in the asymptotic formula (2.23)
may make it somewhat difficult to use or gain intuition from, but with the help of the asymptotic formula
(2.11) for the Lambert W -function, or its stronger version [21, eq. (4.19)] mentioned above, we can extract
the asymptotically dominant terms from inside the exponential to get an asymptotic formula involving
more familiar functions (unfortunately, at a cost of having a much larger error term—but this seems like
an unavoidable tradeoff that comes about as a result of the unusual asymptotic expansion of the Lambert
W -function). For example, as an immediate corollary we get the following more explicit, but weaker, result.

Corollary 2.8 (Asymptotic formula for the logarithm of the coefficients b2n). We have the relation

log b2n = −2n log(2n) + 2n log log

(
2n

π

)
+O (n)(2.24)

as n→∞.
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Proof of Theorem 2.7. Define numbers Qn, rn by

Qn =

∫ ∞
0

x2ne−
x2

4 e
5x
2

(
e2x − 3

2π

)
exp

(
−πe2x

)
dx,(2.25)

rn =

∫ ∞
0

x2ne−
x2

4 e
5x
2

∞∑
m=2

(
m4e2x − 3m2

2π

)
exp

(
−πm2e2x

)
dx,(2.26)

so that, by (1.8) and (2.1), the relation

(2.27) b2n =
π2

22n−3(2n)!
(Qn + rn)

holds. We will analyze the asymptotic behavior of Qn and then show that the contribution of rn is asymp-
totically negligible relative to that of Qn.

Part 1: analysis of Qn using Laplace’s method. Define a function

f(x) = e−
x2

4 e
5x
2

(
e2x − 3

2π

)
.

Then Qn can be rewritten in the form

(2.28) Qn =
1

22n

∫ ∞
0

f(x) exp (ψ2n(2x)) dx,

where ψ2n(x) is defined in (2.13), with the specific parameter value B = π. This representation makes it
possible to use Laplace’s method to understand the asymptotic behavior of Qn as n grows large. Proceeding
as in the proof of Lemma 2.6, we recall our observation that the function ψ2n(x) has a unique global maximum
point at

x2n = W

(
2n

π

)
.

Now let quantities αn, βn, γn be defined by

αn = ψ2n(x2n),(2.29)

βn = −ψ′′2n(x2n),(2.30)

γn = f(x2n/2).(2.31)

Examining these quantities a bit more closely, note that αn = A2n in the notation used in the proof of
Lemma 2.6 (again with the parameter B = π), so that, as in (2.15), we have

(2.32) αn = 2n

(
log(2n)− log π − x2n −

1

x2n

)
.

For βn we have that

(2.33) βn =
2n

x2
2n

+ πex2n =
2n

x2
2n

+
2n

x2n
=

(
1 +O

(
1

log n

))
2n

x2n
,

and for γn we can write

γn =
(
1 +O

(
e−x2n

))
exp

(
− 1

16
x2

2n +
9

4
x2n

)
=

(
1 +O

(
log n

n

))(
2n

πx2n

)9/4

exp

(
− 1

16
x2

2n

)
.(2.34)

With these preparations, Laplace’s method in its heuristic form predicts that the integral on the right-hand
side of (2.28) is given approximately for large n by the expression

(2.35)

√
π√

−2ψ′′2n(x2n)
f(x2n/2) exp (ψ2n(xn)) =

√
π√

2βn
γn exp(αn).

Our goal is to establish this rigorously, with a precise rate of convergence estimate; substituting the formulas
(2.32)–(2.34) into (2.35) will then give the desired formula for Qn.
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It will be convenient to split up the integral definingQn into three parts and estimate each part separately.
Denote µn = n−2/5, and denote by Jn the interval

[
1
2x2n − µn, 1

2x2n + µn
]
. Now let

Q(1)
n =

∫ 1
2x2n−µn

0

f(x) exp(ψ2n(2x)) dx,

Q(2)
n =

∫
Jn

f(x) exp(ψ2n(2x)) dx,

Q(3)
n =

∫ ∞
1
2x2n+µn

f(x) exp(ψ2n(2x)) dx,

so that Qn = 1
22n

(
Q

(1)
n +Q

(2)
n +Q

(3)
n

)
. Our estimates will rely on the following useful calculus observations

(the first two of which were already noted in the proof of Lemma 2.6).

(1) The function ψ2n(x) is increasing on (0, x2n) and decreasing on (x2n,∞).

(2) The function ψ2n(x) is concave.

(3) supx∈Jn |ψ
′′′
2n(2x)| = O(n) as n→∞.

Proof. ψ′′′2n(2x) = n
2x3 − πe2x, so, for x ∈ Jn, using the fact that (by (2.14)) for n large enough we

have the relation Jn ⊆
[

1
4 log n, 1

2 log n
]
, we get that

|ψ′′′2n(2x)| ≤ n

2x3
+ πe2x ≤ 43n

2 log3 n
+ πelogn = O(n).

(4) As a consequence of the last observation, the Taylor expansion of ψ2n(2x) around x = 1
2x2n in the

interval Jn has the form

(2.36) ψ2n(2x) = αn − 2βn

(
x− x2n

2

)2

+O

(
n
∣∣∣x− x2n

2

∣∣∣3) (x ∈ Jn),

where the constant implicit in the big-O term does not depend on n or x.

(5) supx∈Jn

∣∣∣ f(x)
f(x2n/2) − 1

∣∣∣ = O
(

logn
n2/5

)
.

Proof. Noting that xn → ∞ as n → ∞, so that f(x2n/2) ≥ 1
2e
− x

2
2n
16 + 9

4x2n if n is large, we have
that∣∣∣∣ f(x)

f(x2n/2)
− 1

∣∣∣∣ =

∣∣∣∣∣∣ e−
x2

4 + 9
2x − 3

2π e
− x24 + 5

2x

e−
x22n
16 + 9

4x2n − 3
2π e
− x

2
2n
16 + 5

4x2n

− 1

∣∣∣∣∣∣(2.37)

=

∣∣∣∣∣∣∣∣
(
e−

x2

4 + 9
2x − 3

2π e
− x24 + 5

2x
)
−
(
e−

x22n
16 + 9

4x2n − 3
2π e
− x

2
2n
16 + 5

4x2n

)
e−

x22n
16 + 9

4x2n − 3
2π e
− x

2
2n
16 + 5

4x2n

∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣e
− x24 + 9

2x − e−
x22n
16 + 9

4x2n

1
2e
− x

2
2n
16 + 9

4x2n

∣∣∣∣∣∣+
3

2π

∣∣∣∣∣∣e
− x24 + 5

2x − e−
x22n
16 + 5

4x2n

1
2e
− x

2
2n
16 + 9

4x2n

∣∣∣∣∣∣
= 2

∣∣∣∣e(− x24 + 9
2x)−(− x

2
2n
16 + 9

4x2n) − 1

∣∣∣∣+
6

2π
e−x2n

∣∣∣∣e(− x24 + 5
2x)−(− x

2
2n
16 + 5

4x2n) − 1

∣∣∣∣ .
Now observe that e−x2n = O(1) and that for x ∈ Jn we have that∣∣∣∣∣
(
−x

2

4
+

9

2
x

)
−
(
−x

2
2n

16
+

9

4
x2n

) ∣∣∣∣∣ ≤ 9

2

∣∣∣x− x2n

2

∣∣∣+
1

4

∣∣∣x− x2n

2

∣∣∣ · ∣∣∣x+
x2n

2

∣∣∣ = O

(
log n

n2/5

)
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(with a uniform constant implicit in the big-O term), and similarly∣∣∣∣(−x2

4
+

5

2
x

)
−
(
−x

2
2n

16
+

5

4
x2n

)∣∣∣∣ = O

(
log n

n2/5

)
,

so that (2.37) implies the claimed bound.

We are ready to evaluate the integrals Q
(1)
n , Q

(2)
n , Q

(3)
n , starting with the middle integral Q

(2)
n , which

is the one that is the most significant asymptotically. The standard idea is that the exponential term
exp(ψ2n(2x)) can be approximated by a Gaussian centered around the point 1

2x2n. This follows from the

Taylor expansion (2.36). Indeed, making the change of variables u =
√
βn
(
x− 1

2x2n

)
in the integral, we

have that

Q(2)
n =

∫
Jn

f(x) exp(ψ2n(2x)) dx(2.38)

=

∫ µn
√
βn

−µn
√
βn

f

(
x2n

2
+

u√
βn

)
exp

(
ψ2n

(
x2n +

2u√
βn

))
du√
βn

=
1√
βn

∫ µn
√
βn

−µn
√
βn

(
1 +O

(
log n

n2/5

))
f
(x2n

2

)
exp

[
αn − 2u2 +O

(
n
|u|3

β
3/2
n

)]
du

=

(
1 +O

(
log n

n2/5

))(
1 +O

(
1

n1/5

))
1√
βn
eαnγn

∫ µn
√
βn

−µn
√
βn

e−2u2

du

=

(
1 +O

(
1

n1/5

))
1√
βn
γne

αn

[√
π

2
−O

(
1

µn
√
βn

exp
(
−2µ2

nβn
))]

=

(
1 +O

(
1

n1/5

)) √
π√

2βn
γne

αn ,

where in the penultimate step we used the standard inequality

(2.39)

∫ ∞
t

e−u
2/2 du ≤ 1

t
e−t

2/2, (t > 0).

Next, to estimate Q
(1)
n , we use the fact that ψ2n(2x) is increasing on the interval of integration, bounding

the integral by the length of the integration interval multiplied by an upper bound for f(x) and the value of
exp(ψ2n(2x)) at the rightmost end of the interval. Note that f(x) is bounded from above by the numerical
constant

K0 :=

(
sup
x≥0

e−
x2

4 + 9
2x +

3

2π
sup
x≥0

e−
x2

4 + 5
2x

)
= e81/4 +

3

2π
e25/4.

Thus, using (2.33), (2.34) and (2.36), we get that

Q(1)
n ≤ K0

(x2n

2
− µn

)
× exp (ψ2n (x2n − 2µn)) ≤ K0

2
x2n exp

(
αn − 2βnµ

2
n +O(nµ3

n)
)

(2.40)

= O(log n)eαnO
(

exp
(
−n1/10

))(
1 +O

(
1

n1/5

))
= O

(
e−

1
2n

1/10

√
π√

2βn
γne

αn

)
.

Next, to estimate Q
(3)
n , note that, as in the proof of Lemma 2.6, by the concavity of ψ2n(2x) the graph

of ψ2n(2x) is bounded from above by the tangent line to the graph at x = x2n

2 +µn. In other words, we have
the inequality

ψ2n(2x) ≤ ψ2n (x2n + 2µn) + 2ψ′2n (x2n + 2µn)
(
x− x2n

2
− µn

)
(x > 0).

Moreover, it is useful to note that the derivative value ψ′2n(x2n + 2µn) satisfies

ψ′2n(x2n + 2µn) =
2n

x2n + 2µn
− πex2n+2µn =

2n

x2n + 2µn
− e2µn

2n

x2n
≤ 2n

x2n

(
1− e2µn

)
≤ −4nµn

x2n
,
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so in particular ψ′2n(x2n + 2µn) ≤ −1 if n is large enough. These observations imply that as n → ∞, Q
(3)
n

satisfies the bound

Q(3)
n ≤ K0

∫ ∞
1
2x2n+µn

exp
(
ψ2n (x2n + 2µn) + 2ψ′2n (x2n + 2µn)

(
x− x2n

2
− µn

))
dx(2.41)

≤ K0

∫ ∞
1
2x2n+µn

exp
(
αn − 2βnµ

2
n +O(nµ3

n)
)

exp
(
−
(
x− x2n

2
− µn

))
dx

= K0

(
1 +O

(
1

n1/5

))
eαnO

(
exp

(
−n1/10

))∫ ∞
0

exp (−u) du = O

(
e−n

1/10

√
π√

2βn
γne

αn

)
.

Combining (2.38), (2.40) and (2.41), we have finally that

(2.42) Qn =

(
1 +O

(
1

n1/5

)) √
π

22n
√

2βn
γne

αn .

Using (2.32)–(2.34) we now get the asymptotic formula

Qn =

(
1 +O

(
1

log n

))
1

22n+ 1
2

(
2n

πx2n

)7/4

exp

[
2n

(
log(2n)− log π − x2n −

1

x2n

)
− 1

16
x2

2n

]
(2.43)

that holds as n → ∞. In particular, for the purpose of comparing Qn to rn, it is useful to note that
the exponential factors 1

22n and eαn are asymptotically the most significant ones in (2.42). More precisely,
recalling (2.14), (2.17), (2.33) and (2.34), we get that

Qn =
1

22n
exp

(
αn +O((log n)2)

)
(2.44)

=
1

22n
exp

[
2n log log(2n)− 2n log log(2n)

log(2n)
− (log π + 1)

2n

log(2n)
+O

(
n(log log n)2

(log n)2

)]
as n→∞.

Part 2: estimating rn. We proceed with asymptotically bounding rn. Observe that, by (2.9), rn
satisfies

|rn| ≤ C1

∫ ∞
0

x2n exp
(
−3πe2x

)
dx =

C1

22n+1

∫ ∞
0

u2n exp (−3πeu) du

for some constant C1 > 0. We can therefore once again apply Lemma 2.6, this time with the parameter
B = 3π, to get that, for all n ≥ 3 and some constant C2 > 0,

|rn| ≤
1

22n
exp

[
2n log log(2n)− 2n log log(2n)

log(2n)
− (log(3π) + 1)

2n

log(2n)
+ C2

2n(log log(2n))2

(log(2n))2

]
.

Comparing this to (2.44), we see that for large n the relation

(2.45) |rn| ≤ exp

(
−1

2
log(3)

2n

log(2n)

)
Qn

holds. Thus rn is indeed asymptotically negligible compared to Qn.

Finishing the proof. Combining (2.27), (2.43) and (2.45) we arrive finally at the desired formula for
b2n:

b2n =
π2

22n−3(2n)!

(
1 +O

(
exp

(
− log(3)

n

log(2n)

)))
Qn

=

(
1 +O

(
1

log n

))
π2

22n−3(2n)!
× 1

22n+ 1
2

(
2n

πx2n

)7/4

exp

[
2n

(
log(2n)− log π − x2n −

1

x2n

)
− 1

16
x2

2n

]
.

Since x2n = W
(

2n
π

)
=
(

1 +O
(

log logn
logn

))
log(2n), this gives (2.23) and completes the proof of Theorem 2.7.

�
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2.5. The Poisson flow, Pólya-De Bruijn flow and the De Bruijn-Newman constant

One recurring theme in the study of the Riemann hypothesis is the idea that in order to understand the
zeros of the Riemann xi (or zeta) function, one might start by looking at suitable approximations to it that
have a simpler structure—for example, being polynomials instead of entire or meromorphic functions—and
trying to understand the location of the zeros of those approximations first. The hope is that there exists
some good approximation that would have the feature that the zeros of the approximating functions can be
understood, and, in an ideal scenario, shown to all lie on the real line (or on the critical line Re(s) = 1/2,
depending on the coordinate system used). In the setting of a discrete sequence of approximations, this
approach has been applied for example to the partial sums of the Taylor series of Ξ(t) [42] and to the partial
sums of the Dirichlet series of ζ(s) [34, 81, 86]. While those attacks can involve the use of some rather
ingenious and sophisticated tools, they have not resulted in any easily quantifiable progress on the original
question of RH.

Instead of looking at a discrete sequence of approximations, certain other contexts naturally suggest
instead a family of approximations indexed by a continuous parameter. We refer to such a family informally,
especially in the case when the family satisfies a partial differential equation or some other sort of dynamical
evolution law (all the approximation families we consider will be of this type) as a flow.

One very natural and well-studied example of such a flow is the family of functions

(2.46) Ξλ(t) =

∫ ∞
−∞

eλx
2

Φ(x)eitx dx (λ ∈ R).

For λ = 0, we have Ξ0 ≡ Ξ, so the family Ξλ is a flow passing through the Riemann xi function at λ = 0.
We refer to it as the Pólya-De Bruijn flow associated with the xi function; this term seems appropriate
in view of Pólya’s discovery of universal factors described in Section 1.1 and its extension by De Bruijn.

Specifically, Pólya’s result described in the introduction to the effect that eλx
2

is a universal factor implies
that the Pólya-De Bruijn flow preserves hyperbolicity (the property of an entire function of having no non-
real zeros) in the positive direction of the “time” parameter λ: that is, if Ξλ is hyperbolic for some specific
value of λ, then so is Ξµ for any µ > λ, and in particular, if it could be shown that Ξλ is hyperbolic for some
negative value λ < 0, the Riemann hypothesis would follow. Moreover, showing that Ξλ is hyperbolic for
positive values of λ (which by the same logic ought to be both more likely to be true, and easier to prove if
true) may still be beneficial, since if for instance it could somehow be shown that Ξλ were hyperbolic for all
λ > 0, once again RH would follow by a straightforward approximation argument.

De Bruijn extended Pólya’s work in an important way when he showed that in fact Ξλ is hyperbolic for
all λ ≥ 1/8. His result was later strengthened slightly by Ki, Kim and Lee [44], who showed that the same
would be true for λ ≥ 1/8−ε for some (fixed, but non-explicit) ε > 0. In the negative direction, Newman [54]
proved that Ξλ is not hyperbolic if λ is a negative number of sufficiently large magnitude, and conjectured
that the same statement holds true for all λ < 0—this is usually formulated as the statement that the De
Bruijn-Newman constant, denoted by Λ and defined as four times the greatest lower bound of the set
of λ’s for which Ξλ is hyperbolic,1 is nonnegative. An explicit numerical lower bound of −50 for the De
Bruijn-Newman constant was later established by Csordas, Norfolk and Varga [23]. The lower bound was
pushed upwards further in a succession of papers [24, 25, 26, 56, 57, 78, 83], with the established bounds
gradually growing extremely close to 0 on the negative side. Most recently Rodgers and Tao [76] succeeded
in proving Newman’s conjecture that Λ ≥ 0, and recent work by the Polymath15 project [72] strengthened
the result of Ki, Kim and Lee mentioned above by proving the sharper upper bound Λ ≤ 0.22.

We now come to a key idea that relates the above discussion to our theme of expansions of the Riemann
xi function in families of orthogonal polynomials, and the Hermite polynomials in particular. Specifically,
it is the idea that any series expansion of the Riemann xi function in a system of orthogonal polynomials
comes equipped with its own flow based on the standard construction of the so-called Poisson kernel in
the theory of orthogonal polynomials. We call this the Poisson flow.

1The multiplication by four is a quirk associated with the different notational conventions used by different authors in

the literature on the subject. See p. 63 and Table 5.2 on p. 68 of [14] for further discussion and a comparison of the different
conventions.
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To define the Poisson flow, recall that the Poisson kernel for a family φ = (φn)∞n=0 of polynomials that
are orthogonal with respect to a weight function w(x) is defined by

(2.47) pφr (x, y) =

∞∑
n=0

rn∫
R φn(u)2w(u) du

φn(x)φn(y) (|r| < 1).

Its essential feature is the equation∫ ∞
−∞

pφr (x, y)φn(y)w(y) dy = rnφn(x),

which is trivial to verify by evaluating the integral termwise. That is, the associated integral kernel operator
Πφ
r : f 7→

∫
R p

φ
r (x, y)f(y)w(y) dy acting on L2(R, w(x) dx) sends a function with Fourier expansion f(x) =∑

n γnφn to
∑
n γnr

nφn, with the nth “harmonic” in the expansion being attenuated by a factor rn. Note
that one can also consider the limiting case r → 1, in which case the definition (2.47) of the Poisson kernel pφr
no longer makes sense, but the operator Πφ

1 can be defined simply as the identity operator, which is clearly

the limit of the Πr’s (and pφ1 (x, y) can be thought of as the distribution δ(x− y)).
We can now define the Poisson flow associated with the Riemann xi function for the orthogonal

polynomial sequence φ = (φn) to be the family of functions

(2.48) Xφ
r (t) = Πφ

r (Ξ)(t) =

{∫∞
−∞ pr(t, τ)Ξ(τ)w(τ) dτ if 0 < r < 1,

Ξ(t) if r = 1
(0 < r ≤ 1).

Alternatively, if Ξ(t) is expressed in terms of its Fourier series expansion Ξ(t) =
∑∞
n=0 γnφn(t) in the

orthogonal polynomial family (φn)∞n=0 (in the sense of the function space L2(R, w(x) dx)), we can write the
Poisson flow equivalently as

(2.49) Xφ
r (t) =

∞∑
n=0

rnγnφn(t).

Denote the family of Hermite polynomials by H = (Hn)∞n=0, so that pHr (x, y) and ΠHr now denote
the Poisson kernel and integral operator associated with the Hermite polynomials, respectively, and XHr (t)
denotes the corresponding flow associated with the Riemann xi function. Our main result for this section,
relating the different concepts we introduced above, is the following.

Theorem 2.9 (Connection between the Pólya-De Bruijn and Poisson flows). The Poisson flow for the
Hermite polynomials is related to the Pólya-De Bruijn flow (2.46) via

(2.50) XHr (t) = Ξ(r2−1)/4(rt) (0 < r ≤ 1).

Proof. This is a straightforward calculation that generalizes (2.20) by weighting each of the summands
in the expansion by the factor rn. Once again using the generating function formula (A.13), we have that

XHr (t) =

∞∑
n=0

inrnbnHn(t) =

∞∑
n=0

inrn

2nn!

∫ ∞
−∞

xne−
x2

4 Φ(x) dx ·Hn(t)(2.51)

=

∫ ∞
−∞

( ∞∑
n=0

1

n!

(
irx

2

)n
Hn(t)

)
e−

x2

4 Φ(x) dx =

∫ ∞
−∞

exp

(
2t · irx

2
−
(
irx

2

)2
)
e−

x2

4 Φ(x) dx

=

∫ ∞
−∞

Φ(x) exp

(
(r2 − 1)

x2

4

)
eirtx dx = Ξ(r2−1)/4(rt),

as claimed. �

Theorem 2.9 ties together in an interesting way the different threads of research into RH begun with
the work of Pólya on universal factors (and continued with the extensive subsequent investigations into the
De Bruijn-Newman constant by De Bruijn, Newman and others) on the one hand, and Turán’s ideas on the
Hermite expansion on the other hand. Incidentally, hints of this connection seem to have already been noted
in a less explicit way in the literature; see in particular [13, Section 3].



2.5. THE POISSON FLOW AND THE PÓLYA-DE BRUIJN FLOW 19

One key point to take away from this discussion is that the Poisson flow appears to be a natural device
with which to try to approximate the Riemann xi function. And while Theorem 2.9 shows that the Poisson
flow associated with the Hermite polynomials is equivalent to an already well-studied construction, the point
is that Poisson flows are a method of approximation that allows us a considerable freedom in choosing
the system of orthogonal polynomials to use, and it is conceivable that this might lead to new families of
approximations with useful properties. Indeed, in Chapter 3, when we consider the expansion of Ξ(t) in the
family of Meixner-Pollaczek orthogonal polynomials fn, we will revisit the Poisson flow in the context of this
new expansion and show that it has some quite natural and interesting properties in that setting.

As a final remark, we recall that one of several notable features of the Pólya-De Bruijn flow, first pointed
out in [26], is that it satisfies the time-reversed heat equation

(2.52)
∂Ξλ(t)

∂λ
= −∂

2Ξλ(t)

∂t2
,

a fact that follows immediately from the representation (2.46) by differentiating under the integral sign, and
which played a useful role in the study of the De Bruijn-Newman constant (see [14, Sec. 5.5], [26], [76]). It
is of some interest to note that the same result can also be obtained by using the relation (2.50) interpreting
the Pólya-De Bruijn flow as a reparametrized version of the Poisson flow, together with basic properties of
the Hermite polynomials. To see this, start by inverting (2.50) to express Ξλ(t) in terms of the Poisson flow
as

Ξλ(t) = XH√
1+4λ

(
t√

1 + 4λ

)
.

Now expanding the Poisson flow as in (2.49), we differentiate and then use the classical ordinary differential
equation (A.12) satisfied by the Hermite polynomials, to get that

∂Ξλ(t)

∂λ
=

∂

∂λ

(
XH√

1+4λ

(
t√

1 + 4λ

))
=

∂

∂λ

( ∞∑
n=0

inbn(1 + 4λ)
n
2Hn

(
t√

1 + 4λ

))

=

∞∑
n=0

inbn

[
4
n

2
(1 + 4λ)

n
2−1Hn

(
t√

1 + 4λ

)
− (1 + 4λ)

n
2

4t

2(1 + 4λ)3/2
H ′n

(
t√

1 + 4λ

)]

=

∞∑
n=0

inbn(1 + 4λ)
n
2

[
1

1 + 4λ

(
−H ′′n

(
t√

1 + 4λ

)
+

2t√
1 + 4λ

H ′n

(
t√

1 + 4λ

))

− 2t

(1 + 4λ)3/2
H ′n

(
t√

1 + 4λ

)]

= −
∞∑
n=0

inbn(1 + 4λ)
n
2
∂2

∂t2

(
Hn

(
t√

1 + 4λ

))
= − ∂2

∂t2

(
XH√

1+4λ

(
t√

1 + 4λ

))
= −∂

2Ξλ(t)

∂t2
,

recovering (2.52) as expected. (Incidentally, at the heart of this calculation is the simple observation that

each of the two-variable functions hn(τ, x) = τn/2Hn

(
− x√

τ

)
solves the time-reversed heat equation (hn)τ =

− 1
4 (hn)xx. With a bit of hindsight, this fact coupled with knowledge of (2.52) could have been seen as yet

another clue foreshadowing the connection we made explicit in Theorem 2.9.)
One reason why the above derivation was worth noting is that it has a nice analogue in the context of

the expansion of the Riemann xi function in the orthogonal polynomial family (fn)∞n=0—see Theorem 3.7 in
Section 3.4.



CHAPTER 3

Expansion of Ξ(t) in the polynomials fn

Recall that in the Introduction we discussed a family of polynomials (fn)∞n=0 defined as

fn(x) = P (3/4)
n (x;π/2) =

(3/2)n
n!

in2F1

(
−n, 3

4
+ ix;

3

2
; 2

)
,

where P
(λ)
n (x;φ) denotes the Meixner-Pollaczek polynomials with parameters λ, φ. The polynomials fn form

a family of orthogonal polynomials with respect to the weight function
∣∣Γ ( 3

4 + ix
)∣∣2 on R. Their properties

are summarized in Section A.4. Our main goal in this chapter is to derive the expansion (1.16) for Ξ(t)
in the (trivially rescaled) orthogonal polynomials fn(t/2), which we refer to as the fn-expansion, and to
investigate some of its key properties. After proving two main results about the existence of the expansion
and the asymptotic behavior of the coefficients, we will see that thinking about the fn-expansion leads to a
natural family of approximations to Ξ(t) arising out of the Poisson flow of the orthogonal polynomial family
(fn)∞n=0. The ideas in this chapter will also prepare the ground for much additional theory developed in
Chapters 4 and 5.

3.1. Main results

We start by identifying the numbers c2n that will play the role of the coefficients in the fn-expansion.
We define more generally numbers (cn)∞n=0 by

(3.1) cn = 2
√

2

∫ ∞
0

ω(x)

(x+ 1)3/2

(
x− 1

x+ 1

)n
dx.

The integral converges absolutely, by (2.5)–(2.6). Moreover, the functional equation (1.9) implies through a
trivial change of variables u = 1/x that

(3.2)

∫ 1

0

ω(x)

(x+ 1)3/2

(
x− 1

x+ 1

)n
dx = (−1)n

∫ ∞
1

ω(u)

(u+ 1)3/2

(
u− 1

u+ 1

)n
du.

It follows that c2n+1 = 0 for all n, and that the even-indexed numbers c2n can be alternatively expressed as

(3.3) c2n = 4
√

2

∫ ∞
1

ω(x)

(x+ 1)3/2

(
x− 1

x+ 1

)2n

dx.

Since the integrand in (3.3) is positive on (1,∞), the numbers c2n are positive.
With these preliminary remarks, we can formulate the main result on the expansion (1.16).

Theorem 3.1 (Infinite series expansion for Ξ(t) in the polynomials fn). The Riemann xi function has
the infinite series representation

(3.4) Ξ(t) =

∞∑
n=0

(−1)nc2nf2n

(
t

2

)
,

which converges uniformly on compacts for all t ∈ C. More precisely, for any compact set K ⊂ C there exist
constants C1, C2 > 0 depending on K such that

(3.5)

∣∣∣∣∣Ξ(t)−
N∑
n=0

(−1)nc2nf2n

(
t

2

)∣∣∣∣∣ ≤ C1e
−C2

√
N

20
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holds for all N ≥ 0 and t ∈ K.

We will also prove a formula describing the asymptotic behavior of the coefficient sequence c2n.

Theorem 3.2 (Asymptotic formula for the coefficients c2n). The asymptotic behavior of c2n for large n
is given by

(3.6) c2n =
(

1 +O
(
n−1/10

))
16
√

2π3/2
√
n exp

(
−4
√
πn
)

as n→∞.

A corollary of the above results, analogous to Corollary 2.2, is the following.

Corollary 3.3. The coefficients cn can be alternatively expressed as

(3.7) cn = (−i)n
√

2n!

π3/2(3/2)n

∫ ∞
−∞

Ξ(t)fn

(
t

2

) ∣∣∣∣Γ(3

4
+
it

2

)∣∣∣∣2 dt.
Proof. This is analogous to the proof of Corollary 2.2. �

3.2. Proof of Theorem 3.1

The next two lemmas establish technical bounds that will be useful for our analysis and play a similar
role to the one played in the previous chapter by Lemmas 2.4 and 2.6.

Lemma 3.4. The polynomials fn(x) satisfy the bound

(3.8) |fn(x)| ≤ C1e
C2n

1/3

for all n ≥ 0, uniformly as x ranges over any compact set K ⊂ C, with C1, C2 > 0 being constants that
depend on K but not on n.

Proof. Fix the compact K ⊂ C, and denote M = 2 maxx∈K |x|. Fix an integer N0 ≥ max(4, (3M)3).
Let C1, C2 > 0 be constants for which (3.8) holds for all x ∈ K and 0 ≤ n ≤ N0, and such that C2 ≥ 1.
Note that for all n ≥ N0 we have the inequality n1/3 − (n− 2)1/3 ≥ 2

3n2/3 , which implies that

(3.9) e−C2(n1/3−(n−2)1/3) ≤ e−(n1/3−(n−2)1/3) ≤ 1− 1

3n2/3
.

(since e−x ≤ 1 − x/2 if 0 ≤ x ≤ 1). Then, assuming by induction that we have proved the bound (3.8) for
all cases up to n − 1, in the nth case (where n > N0) we can use the recurrence (A.27) and (3.9) to write
that, for all x ∈ K,

|fn(x)| ≤ 2|x|
n
|fn−1(x)|+

(
1− 1

2n

)
|fn−2(x)| ≤ M

n
C1e

C2(n−1)1/3 +

(
1− 1

2n

)
C1e

C2(n−2)1/3

≤ C1e
C2n

1/3

[
M

n
e−C2(n1/3−(n−1)1/3) +

(
1− 1

2n

)
e−C2(n1/3−(n−2)1/3)

]
≤ C1e

C2n
1/3

[
M

n
+

(
1− 1

2n

)(
1− 1

3n2/3

)]
≤ C1e

C2n
1/3

[
1

3n2/3
+

(
1− 1

3n2/3

)]
= C1e

C2n
1/3

.

This completes the inductive step. �

Lemma 3.5. For any number B ≥ 1 there is a constant C > 0 such that

(3.10)

∫ ∞
1

e−Bx
(
x− 1

x+ 1

)n
dx ≤ Ce−2

√
Bn

for all n ≥ 0.



22 3. EXPANSION OF Ξ(t) IN THE POLYNOMIALS fn

Proof. The integral can be expressed as∫ ∞
1

exp (ψn(x)) dx,

where we define

(3.11) ψn(x) = −Bx+ n log

(
x− 1

x+ 1

)
.

By solving the equation ψ′n(x) = 0, it is easy to check that ψn(x) has a unique global maximum point xn in
[1,∞), namely

0 = ψ′n(xn) = −B +
2n

x2
n − 1

⇐⇒ xn =

√
2n

B
+ 1,

which asymptotically as n→∞ behaves as

xn =

√
2n

B
+O

(
1√
n

)
.

The value at the maximum point is

ψn(xn) = −Bxn + n log

(
xn − 1

xn + 1

)
= −Bxn + n log

(
1− 1/xn
1 + 1/xn

)
= −
√

2Bn+O

(
1√
n

)
+ n

(
−2 · 1

xn
+O

(
1

x3
n

))
= −2

√
2Bn+O

(
1√
n

)
as n→∞. We conclude that∫ ∞

1

exp (ψn(x)) dx =

∫ 2xn

1

exp (ψn(x)) dx+

∫ ∞
2xn

exp (ψn(x)) dx

≤ 2xn exp (ψn(xn)) +

∫ ∞
2xn

e−Bx dx

=

(
1 +O

(
1√
n

))
2

√
2n

B
exp

(
−2
√

2Bn
)

+
1

B
e−2Bxn = O

(
e−2
√
Bn
)

as n→∞, as claimed. �

Denote s = 1
2 + it, and observe that with this substitution the Mellin transform representation (1.10)

for ξ(s) becomes the statement that

Ξ(t) =

∫ ∞
0

ω(x)x−
3
4 + it

2 dx.

The idea behind the expansion (3.4) is the simple yet powerful fact that the integration kernel x−
3
4 + it

2 can
be expanded in a very specific way in an infinite series related to the generating function (A.29). More
precisely, for any x > 0 we have that

xs/2−1 = x−
3
4 + it

2 =
2
√

2

(x+ 1)3/2

(
2x

x+ 1

)− 3
4 + it

2
(

2

x+ 1

)− 3
4−

it
2

(3.12)

=
2
√

2

(x+ 1)3/2
·
(

(1− iz)− 3
4 + it

2 (1 + iz)−
3
4−

it
2

)∣∣∣z=i x−1
x+1

=
2
√

2

(x+ 1)3/2

∞∑
n=0

fn

(
t

2

)(
i
x− 1

x+ 1

)n
=

2
√

2

(x+ 1)3/2

∞∑
n=0

infn

(
t

2

)(
x− 1

x+ 1

)n
.

One can now get (3.4) as a formal identity by multiplying the first and last expressions in this chain of
equations by ω(x) and integrating both sides over (0,∞), then using the fact that the odd-indexed coefficients
c2n+1 vanish.
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To rigorously justify this formal calculation and obtain the more precise rate of convergence estimate
(3.5), we now make use of the technical bounds from Lemmas 3.4 and 3.5. Using the above infinite series

representation of the kernel x−
3
4 + it

2 , we see that∣∣∣∣∣Ξ(t)−
N∑
n=0

(−1)2nc2nf2n

(
t

2

) ∣∣∣∣∣ =

∣∣∣∣∣Ξ(t)−
2N∑
n=0

incnfn

(
t

2

)∣∣∣∣∣
=

∣∣∣∣∣
∫ ∞

0

ω(x)

(
x−

3
4 + it

2 − 2
√

2

(x+ 1)3/2

2N∑
n=0

fn

(
t

2

)(
i
x− 1

x+ 1

)n)
dx

∣∣∣∣∣
≤
∫ ∞

0

ω(x)

∣∣∣∣∣x− 3
4 + it

2 − 2
√

2

(x+ 1)3/2

2N∑
n=0

fn

(
t

2

)(
i
x− 1

x+ 1

)n∣∣∣∣∣ dx
= 2
√

2

∫ ∞
0

ω(x)

(x+ 1)3/2

∣∣∣∣∣
∞∑

n=2N+1

fn

(
t

2

)(
i
x− 1

x+ 1

)n∣∣∣∣∣ dx
≤ 2
√

2

∫ ∞
0

ω(x)

(x+ 1)3/2

∞∑
n=2N+1

∣∣∣∣fn( t2
)∣∣∣∣ · ∣∣∣∣ix− 1

x+ 1

∣∣∣∣n dx
≤ 2
√

2

∫ ∞
0

ω(x)

(x+ 1)3/2

∞∑
n=2N+1

C1e
C2n

1/3

∣∣∣∣x− 1

x+ 1

∣∣∣∣n dx
= 2
√

2

∞∑
n=2N+1

C1e
C2n

1/3

∫ ∞
0

ω(x)

(x+ 1)3/2

∣∣∣∣x− 1

x+ 1

∣∣∣∣n dx
= 4
√

2

∞∑
n=2N+1

C1e
C2n

1/3

∫ ∞
1

ω(x)

(x+ 1)3/2

(
x− 1

x+ 1

)n
dx,

where C1, C2 are the constants from Lemma 3.4 (associated with the compact set K over which we are

allowing t to range); the last step follows from (3.2). Now note that, by (2.5), ω(x)
(x+1)3/2

= O (
√
xe−πx) =

O
(
e−πx/2

)
as x → ∞, so we can apply Lemma 3.5 (with B = π/2) to the integrals, to get that the last

expression in the above chain of inequalities is bounded by

4
√

2

∞∑
n=2N+1

C1e
C2n

1/3

· Ce−2
√
πn/2,

and this is easily seen to beO
(
e−
√
πN
)

asN →∞. This proves (3.5) and completes the proof of Theorem 3.1.

�

3.3. Proof of Theorem 3.2

Define a function φ(x), and numbers Zn and εn, by

φ(x) =
πx(2πx− 3)

(x+ 1)3/2
,

Zn =

∫ ∞
1

φ(x)e−πx
(
x− 1

x+ 1

)2n

dx,

εn =

∫ ∞
1

(
ω(x)

(x+ 1)3/2
− φ(x)e−πx

)(
x− 1

x+ 1

)2n

dx,
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so that c2n in (3.3) can be rewritten as c2n = 4
√

2(Zn+εn). We consider separately the asymptotic behavior
of Zn and εn. For εn, note that we have

(3.13)

∣∣∣∣ ω(x)

(x+ 1)3/2
− φ(x)e−πx

∣∣∣∣ = O
(
e−3πx

)
as x→∞,

by (2.7). Thus, Lemma 3.5 implies that

(3.14) |εn| = O
(
e−2
√

6πn
)

as n→∞.

The main asymptotic contribution to c2n comes from Zn, and can be found using Laplace’s method. Start
by rewriting Zn as

Zn =

∫ ∞
1

φ(x) exp(ψ2n(x)) dx,

where ψn(x) is the function defined in (3.11) with B = π. Noting that, as was discussed in the proof of
Lemma 3.5, ψ2n(x) has a unique global maximum point at

τn := x2n =

√
4n

π
+ 1 =

√
4n

π
+O

(
1√
n

)
as n→∞,

we further split this integral up into three parts, by writing Zn = Z
(1)
n + Z

(2)
n + Z

(3)
n , with

Z(1)
n =

∫ τn−n3/10

1

φ(x) exp(ψ2n(x)) dx,(3.15)

Z(2)
n =

∫
In

φ(x) exp(ψ2n(x)) dx,(3.16)

Z(3)
n =

∫ ∞
τn+n3/10

φ(x) exp(ψ2n(x)) dx,(3.17)

where In denotes the interval [τn − n3/10, τn + n3/10].
The following calculus facts are straightforward to check; their verification is left to the reader:

(1) φ(x) is monotone increasing on [1,∞).
(2) ψ2n(x) is monotone increasing on [1, τn] and monotone decreasing on [τn,∞).
(3) ψ2n(x) is concave on [1,∞).
(4) We have the asymptotic relations

Vn := ψ2n(τn) = −πτn + 2n log

(
τn − 1

τn + 1

)
= −4

√
πn+O

(
1√
n

)
,

Dn := −ψ′′2n(τn) =
π2

2n
τn = π3/2 1√

n
+O

(
1

n3/2

)
,

En := φ(τn) = 2
√

2π7/4n1/4 +O

(
1

n1/4

)
,

Kn := ψ′2n(τn + n3/10) = −π3/2n−1/5 +O

(
1

n2/5

)
as n→∞.

(5) We have the relation ψ′′′2n(x) = 8n(3x2+1)
(x2−1)3 . Consequently

sup
x∈In

|ψ′′′2n(x)| = O

(
1

n

)
as n→∞,

which implies that the Taylor expansion of ψ2n(x) around x = τn can be written as

ψ2n(x) = Vn −
1

2
Dn(x− τn)2 +O

(
|x− τn|3

n

)
, (x ∈ In)

where the constant implicit in the big-O term does not depend on x or n.
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(6) We have

sup
x∈In

∣∣∣∣φ(x)

En
− 1

∣∣∣∣ = O

(
1

n1/5

)
as n→∞.

We now estimate the integrals (3.15)–(3.17). For Z
(1)
n , since φ(x) and ψ2n(x) are increasing on [1, τn],

we have that

|Z(1)
n | ≤ (τn − n3/10 − 1)φ(τn − n3/10) exp

(
ψ2n(τn − n3/10)

)
(3.18)

≤ O
(
n3/4

)
exp

(
Vn −

1

2
Dnn

3/5 +O

(
n9/10

n

))
= O

(
1

n2
e−4
√
πn

)
as n→∞.

For Z
(3)
n , we use the fact that

ψ2n(x) ≤ ψ2n(τn + n3/10) +Kn(x− τn − n3/10)

for all x ≥ τn + n3/10 (which follows from the concavity of ψ2n(x)) to write

|Z(3)
n | ≤

∫ ∞
τn+n3/10

φ(x) exp

[
ψ2n(τn + n3/10) +Kn(x− τn − n3/10)

]
dx(3.19)

≤ exp

[
Vn −

1

2
Dnn

3/5 +O

(
n9/10

n

)]
×
∫ ∞
τn+n3/10

O
(√
x
)

exp

[
−
(

1 +O

(
1

n1/5

))
π3/2n−1/5(x− τn − n3/10)

]
dx

= e−4
√
πnO

(
e−n

1/20
)

= O

(
1

n2
e−4
√
πn

)
.

Finally, to obtain the asymptotics of Z
(2)
n , we make the change of variables u =

√
Dn(x − τn) in the

integral (3.16), to get that

Z(2)
n =

∫ √Dnn3/10

−
√
Dnn3/10

φ

(
τn +

u√
Dn

)
exp

(
ψ2n

(
τn +

u√
Dn

))
du√
Dn

(3.20)

=
1√
Dn

∫ √Dnn3/10

−
√
Dnn3/10

φ

(
τn +

u√
Dn

)
exp

[
Vn −

1

2
u2 +O

(
|u|3

nD
3/2
n

)]
du

=

(
1 +O

(
1

n1/4

))
π−3/4n1/4 ×

(
1 +O

(
1

n1/5

))
En

×
(

1 +O

(
1√
n

))
e−4
√
πn ×

∫ √Dnn3/10

−
√
Dnn3/10

exp

[
−u2/2 +O

(
1

n1/10

)]
du

=

(
1 +O

(
1

n1/10

))
π−3/4n1/4 × 2

√
2π7/4n1/4 × e−4

√
πn

(√
2π −O

(
exp

(
−1

2
Dnn

3/5

)))
=

(
1 +O

(
1

n1/10

))
4π3/2n1/2e−4

√
πn,

where we once again used (2.39) to account for the error arising from adding the tails of the Gaussian
integral.

Since c2n = 4
√

2
(
εn + Z

(1)
n + Z

(2)
n + Z

(3)
n

)
, combining (3.14), (3.18), (3.19) and (3.20) gives the asymp-

totic formula (3.6). The proof of Theorem 3.2 is complete. �
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3.4. The Poisson flow associated with the fn-expansion

Motivated by the developments of Section 2.5, we now consider the Poisson flow (2.48) associated with
the family (fn)∞n=0 of orthogonal polynomials, which in this section we will denote by F . Recall that in
the case of the Hermite expansion, we showed that the Poisson flow could be understood as the family of
Fourier transforms of functions obtained from the function Φ(x) by performing a simple operation (refer to
(2.51)). One might wonder if something similar (or perhaps even more interesting) happens in the case of
the Poisson flow associated with the family F . The answer is given in the following result.

Theorem 3.6 (Mellin transform representation of the Poisson flow). For 0 < r < 1, the function XFr (t)
has the Mellin transform representation

(3.21) XFr (t) =

∫ ∞
0

ωr(x)x−
3
4 + it

2 dx (t ∈ C),

where we define

(3.22) ωr(x) =

{
1+η√
1−η

1√
1−ηxω

(
x−η
1−ηx

)
if η < x < 1/η,

0 otherwise,

making use of the notation

(3.23) η =
1− r
1 + r

.

Note that the map x 7→ x−η
1−ηx maps the interval (η, 1/η) bijectively onto (0,∞), so the function ωr(x)

contains the same “frequency information” as ω(x), but compressed into a finite interval. In particular,
a notable feature of this result, which stands in contrast to what we saw in the case of the Poisson flow
associated with the Hermite polynomials, is that for r < 1 the function XFr (t) is now the Fourier transform
of a function with bounded support; that is, XFr (t) is an entire function of exponential type. It is intriguing
to speculate that this might make the problem of understanding where the zeros of XFr (t) are located easier
than for the case of the original xi function Ξ(t).

Proof. The derivation starts with the formula (2.49). Specializing this to the expansion (3.4) and
substituting the defining formula (3.1) for the coefficients cn, we have that

XFr (t) =

∞∑
n=0

incnr
nfn

(
t

2

)
= 2
√

2

∞∑
n=0

∫ ∞
0

ω(x)

(x+ 1)3/2

(
x− 1

x+ 1

)n
dx · rnfn

(
t

2

)

= 2
√

2

∫ ∞
0

ω(x)

(x+ 1)3/2

∞∑
n=0

fn

(
t

2

)(
ir
x− 1

x+ 1

)n
dx

= 2
√

2

∫ ∞
0

ω(x)

(x+ 1)3/2

( ∞∑
n=0

fn

(
t

2

)
zn

)∣∣∣z=ir x−1
x+1

dx.

Inside the integrand we have an expression involving the generating function (A.29) of the polynomials fn(x).
Substituting the formula for this generating function (as we did in (3.12), which is essentially the special
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case r = 1 of the current computation) gives that

XFr (t) = 2
√

2

∫ ∞
0

ω(x)

(x+ 1)3/2

(
(1− iz)− 3

4 + it
2 (1 + iz)−

3
4 + it

2

)∣∣∣z=ir x−1
x+1

dx

= 2
√

2

∫ ∞
0

ω(x)

(x+ 1)3/2

(
1− r + x(1 + r)

x+ 1

)− 3
4 + it

2
(

1 + r + x(1− r)
x+ 1

)− 3
4−

it
2

dx

= 2
√

2

∫ ∞
0

ω(x)(1 + r)−
3
4 + it

2

(
x+

1− r
1 + r

)− 3
4 + it

2

(1 + r)−
3
4−

it
2

(
1 +

1− r
1 + r

x

)− 3
4−

it
2

dx

=
2
√

2

(1 + r)3/2

∫ ∞
0

ω(x)
1

(1 + ηx)3/2

(
x+ η

1 + ηx

)− 3
4 + it

2

dx

= (1 + η)3/2

∫ ∞
0

ω(x)
1

(1 + ηx)3/2

(
x+ η

1 + ηx

)− 3
4 + it

2

dx.

We have thus expressed XFr (t) as a sort of modified Mellin transform of ω(x). But this last integral formula
can be transformed to an ordinary Mellin transform by making the change of variables x = u−η

1−ηu in the last

integral. The reader can verify without difficulty that this yields the Mellin transform (3.21) of the function
given in (3.22). �

In the next result we show that the Poisson flow satisfies an interesting dynamical evolution law, anal-
ogous to the time-reversed heat equation (2.52) satisfied by the Pólya-De Bruijn flow. In this case the
evolution law is not a partial differential equation, but rather a differential difference equation (DDE).
To make the equation homogeneous in the “time” variable, it is most convenient to perform a change of
variables, reparametrizing the time variable r by denoting r = e−τ (with τ ≥ 0).

Theorem 3.7 (Differential difference equation for the Poisson flow). The function M(τ, t) := XFe−τ (t)
satisfies the differential difference equation

(3.24)
∂M

∂τ
=

3

4
M(τ, t)− 1

2

(
3

4
− it

2

)
M(τ, t+ 2i)− 1

2

(
3

4
+
it

2

)
M(τ, t− 2i) (τ > 0, t ∈ C).

Proof. The computation is analogous to the derivation of the time-reversed heat equation at the end
of Section 2.5, except that instead of using the differential equation satisfied by the Hermite polynomials we
use the difference equation (A.28) satisfied by the polynomials fn(x). We have, again starting with (2.49)
with the substitution r = e−τ ,

∂M

∂τ
=

∂

∂τ

( ∞∑
n=0

incne
−nτfn

(
t

2

))
=

∞∑
n=0

incn(−n)e−nτfn

(
t

2

)

=

∞∑
n=0

incne
−nτ

(
3

4
fn

(
t

2

)
− 1

2

(
3

4
+
it

2

)
fn

(
t

2
− i
)
− 1

2

(
3

4
− it

2

)
fn

(
t

2
+ i

))

=
3

4

∞∑
n=0

incne
−nτfn

(
t

2

)
− 1

2

(
3

4
+
it

2

) ∞∑
n=0

incne
−nτfn

(
t

2
− i
)
− 1

2

(
3

4
− it

2

) ∞∑
n=0

incne
−nτfn

(
t

2
+ i

)
=

3

4
M(τ, t)− 1

2

(
3

4
− it

2

)
M(τ, t+ 2i)− 1

2

(
3

4
+
it

2

)
M(τ, t− 2i).

�

3.5. Evolution of the zeros under the Poisson flow

The differential difference equation (3.24) opens up the way to an analysis of the dynamical evolution
of the zeros of the functions XFr (t) as a function of r, in a manner analogous to how the time-reversed heat
equation (2.52) made it possible to write a system of coupled ODEs satisfied by the Pólya-De Bruijn flow,
which played a useful role in the investigations of the De Bruijn-Newman constant (see [14, Lemma 5.18,
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p. 83]). Our next goal is to derive this evolution law, again using the more convenient time parameter τ . To
avoid technicalities involving the behavior of entire functions (and to generalize the question slightly, which
also seems potentially useful), we switch in this section from the Riemann xi function to the simpler setting
of polynomials.

Let z1, . . . , zn ∈ C be distinct complex numbers. Let

(3.25) p(t) =

n∏
k=1

(t− zk),

and consider the function Mp(τ, t) defined as the solution to the DDE (3.24) with initial condition Mp(0, t) =
p(t). To see that such an object exists, write the expansion

p(t) =

n∑
k=0

γkfk

(
t

2

)
in the linear basis of polynomials (fk(t/2))nk=0. Then Mp(τ, t) is given by

(3.26) Mp(τ, t) =

n∑
k=0

γke
−kτfk

(
t

2

)
(the proof is a repetition of the calculation in the proof of Theorem 3.7 above, with both proofs being based
on the simple observation that each of the functions mk(τ, t) = e−kτfk(t/2) for k ≥ 0 is a solution to (3.24)).
Proving uniqueness is left as an exercise. We refer to the function Mp(τ, t) as the Poisson flow (associated
with the polynomial family F) with initial condition p.

For any fixed τ ∈ R, the function t 7→Mp(τ, t) is a polynomial of degree n with leading coefficient e−nτ (to
see this, compare (3.26) at times τ and 0, taking into account (3.25)). Denote its zeros by Z1(τ), . . . , Zn(τ),
and note that while they are defined only up to ordering, in the neighborhood of any fixed time τ0 for which
the zeros are distinct one can pick the ordering so that Zk(τ) are smooth functions of τ .

Theorem 3.8 (Evolution equations for the zeros under the Poisson flow). In the neighborhood of any
τ0 as above, the functions (Zk(τ))nk=1 satisfy the system of coupled ordinary differential equations

dZk
dτ

=
1

2

[(
Zk +

3i

2

) ∏
1≤j≤n
j 6=k

(
1 +

2i

Zk − Zj

)
+

(
Zk −

3i

2

) ∏
1≤j≤n
j 6=k

(
1− 2i

Zk − Zj

)]
(1 ≤ k ≤ n).

Proof. The fundamental relation defining the kth zero Zk is

Mp(τ, Zk(τ)) = 0.

Differentiating this with respect to τ gives

0 =
d

dτ

(
Mp(τ, Zk(τ))

)
=
∂Mp

∂τ
(τ, Zk(τ)) +

∂Mp

∂t
(τ, Zk(τ))

dZk
dτ

(where
∂Mp

∂t refers to the partial derivative with respect to the second variable). By (3.24), this expands to

0 =
3

4
Mp(τ, Zk)− 1

2

(
3

4
− iZk

2

)
Mp(τ, Zk + 2i)− 1

2

(
3

4
+
iZk
2

)
Mp(τ, Zk − 2i) +

∂Mp

∂t
(τ, Zk(τ))

dZk
dτ

= −1

2

(
3

4
− iZk

2

)
Mp(τ, Zk + 2i)− 1

2

(
3

4
+
iZk
2

)
Mp(τ, Zk − 2i) +

∂Mp

∂t
(τ, Zk(τ))

dZk
dτ

.

Now, Mp(τ, t) = e−nτ
∏n
j=1(t− Zj(τ)), so

∂Mp

∂t
(τ, Zk(τ)) = e−nτ

∏
1≤j≤n
j 6=k

(Zk − Zj).
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It follows that

dZk
dτ

=
1

2

1
∂Mp

∂t (τ, Zk(τ))

[(
3

4
− iZk

2

)
Mp(τ, Zk + 2i) +

(
3

4
+
iZk
2

)
Mp(τ, Zk − 2i)

]

=
1

2

∏
1≤j≤n
j 6=k

(Zk − Zj)−1

(3

4
− iZk

2

) n∏
j=1

(Zk + 2i− Zj) +

(
3

4
+
iZk
2

) n∏
j=1

(Zk − 2i− Zj)


=

1

2

[
2i

(
3

4
− iZk

2

) ∏
1≤j≤n
j 6=k

Zk + 2i− Zj
Zk − Zj

+ (−2i)

(
3

4
+
iZk
2

) ∏
1≤j≤n
j 6=k

Zk − 2i− Zj
Zk − Zj

]

=
1

2

[(
Zk +

3i

2

) ∏
1≤j≤n
j 6=k

(
1 +

2i

Zk − Zj

)
+

(
Zk −

3i

2

) ∏
1≤j≤n
j 6=k

(
1− 2i

Zk − Zj

)]
,

as claimed. �

Our final result for this section is of a negative sort, illustrating another way in which the Poisson
flow associated with the family F of orthogonal polynomials behaves differently from the Pólya-De Bruijn
flow. Specifically, it was mentioned in Section 2.5 that the Pólya-De Bruijn flow preserves the property of
hyperbolicity. Our result shows that the Poisson flow associated with the family F does not.

Proposition 3.9. There exists a polynomial

P (t) =

n∑
k=0

γkfk

(
t

2

)
,

and numbers τ1 > 0 and τ2 < 0, such that P (t) has only real zeros, but the polynomials t 7→ MP (τ1, t) and
t 7→MP (τ2, t) both have non-real zeros.

Proof. Take

P (t) = (x− 2)(x− 2.01)(x− 4) =

4∑
k=0

σkfk

(
t

2

)
,

where

(σ0, σ1, σ2, σ3) =

(
−5619

1600
,

83

25
,−801

400
,

3

4

)
,

and τ1 = 0.1 and τ2 = −0.05. Direct calculation of the zeros of MP (τ1, t) and MP (τ2, t) verifies the claim. �

One conclusion from Proposition 3.9 is that there does not seem to be an obvious way to define an
analogue of the De Bruijn-Newman constant in the context of the fn-expansion of the Riemann xi function.



CHAPTER 4

Radial Fourier self-transforms

In this chapter we continue to probe deeper into the theory of the fn-expansion of the Riemann xi
function, by developing what will turn out to be an entirely new way of thinking about the expansion
as arising out of the expansion of an elementary function A(r) (described below in (4.5)) in a natural

orthogonal basis of functions related to the Laguerre polynomials L
1/2
n (x). Along the way we will encounter

several interesting new special functions and develop some new ideas, which are of independent interest,
related to radial functions that are eigenfunctions of the Fourier transform, and their connections to a class
of functions satisfying a symmetry property similar to (but weaker than) that satisfied by modular forms.

4.1. Radial Fourier self-transforms on Rd and their construction from balanced functions

A function F : Rd → R is called a radial function if F (x) depends only on the Euclidean norm |x|.
Given a radial function F , it is common to abuse notation slightly and write F (x) = F (|x|), that is, we use
the same symbol to denote the function on Rd and the function (on [0,∞)) of the norm through which the
original radial function can be computed. Conversely, given a function F : [0,∞)→ R it will sometimes be
convenient to regard F as a radial function on Rd for some specified value of d.

Let Fd denote the Fourier transform on Rd, with the normalization

Fd(F )(y) =

∫
Rd
F (x)e−2πi〈y,x〉 dx.

It is well-known that the d-dimensional Fourier transform Fd(F ) of a radial function F is also a radial
function, and can be expressed as a Hankel transform, namely as

(4.1) Fd(F )(ρ) = 2πρ1−d/2
∫ ∞

0

F (r)rd/2Jd/2−1(2πrρ) dr (ρ ≥ 0),

where

Jα(z) =
∞∑
n=0

(−1)n

n! Γ(n+ α+ 1)

(z
2

)2n+α

denotes the Bessel function; see [31, Sec. B.5]. The cases d = 1 and d = 3 of (4.1) are particularly simple
(and of relevance to us, as we shall see). In those cases, the standard identities

J1/2(x) =

√
2

π

sin(x)√
x
, J−1/2(x) =

√
2

π

cos(x)√
x

mean that (4.1) can be rewritten as

F1(F )(ρ) = 2

∫ ∞
0

F (r) cos(2πrρ) dr,(4.2)

F3(F )(ρ) =
2

ρ

∫ ∞
0

F (r)r sin(2πrρ) dr.(4.3)

Note that the case d = 1 is simply a cosine transform; indeed, a radial function on Rd for d = 1 is the same
as an even function.

A function F : Rd → R is called a (Fourier) self-transform if Fd(F ) = F . The Gaussian F (r) = e−πr
2

is an important example of a self-transform (in any dimension!) which is also a radial function. More

30
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generally, through a trivial rescaling operation we see that the Fourier transform of a scaled Gaussian e−πcr
2

(with c > 0) is given by

Fd(e−πcr
2

)(ρ) = c−d/2e−πρ
2/c.

This relation provides a general means for constructing a large class of radial self-transforms in Rd by taking
a weighted average of scaled Gaussians (or a “scale mixture” of Gaussians, in probabilistic language), using
a weighting function in which the contribution of the Gaussian scaled by a given scalar c is suitably matched
by that coming from the reciprocal scalar 1/c. This sort of construction can be found for example in works
by Hardy and Titschmarsh [33] and Barndorff-Nielsen et al [7]. As discussed by Cohn [20], the same
construction in the case where the weighting functions are modular forms motivated recent progress on the
sphere packing problem (see also [90]).

For our purposes, the weighting functions we will consider are related to modular forms but are more
general. Let α ≥ 0. If a function f : (0,∞)→ R satisfies the relation

f

(
1

x

)
= xαf(x) (x > 0),

we say that f is a reciprocally balanced function of weight α. (Usually, for convenience we will omit
the adverb “reciprocally” and simply refer to f as a balanced function of weight α.) The following result is
a trivial variant of the observation made in [7, Eq. (2.3)].

Lemma 4.1 (Constructing self-transforms from balanced functions). Let d ∈ N. Let f(x) be a reciprocally
balanced function of weight 2− d/2, and define an associated function

(4.4) F (r) =

∫ ∞
0

f(x)e−πxr
2

dx (r > 0).

Then F , considered as a radial function on Rd, is a Fourier self-transform, assuming its Fourier transform
is well-defined.

Proof.

Fd(F )(ρ) =

∫ ∞
0

f(x)Fd
(
e−πxr

2
)

(ρ) dx =

∫ ∞
0

f(x)x−d/2e−πρ
2/x dx

=

∫ ∞
0

f(1/y)yd/2e−πyρ
2 dy

y2
=

∫ ∞
0

f(y)e−πyρ
2

dy = F (ρ).

�

Note that the relationship between f(x) and F (r) in (4.4) is simply that F (r) is the Laplace transform
(LF )(u) of f(x), with the change of coordinates u = πr2. It can also be interpreted as a group-theoretic

convolution operation of the Gaussian function r 7→ e−πr
2

with the function x 7→ x−1f(x−1) with respect to
the multiplicative group structure on R+ equipped with the multiplicative Haar measure dx

x .

4.2. The radial function A(r) associated to ω(x)

We have encountered two balanced functions that play an important role in the study of the Riemann
xi function: the function θ(x) (which is in fact a modular form), and the function ω(x) derived from it;
both of those functions are balanced of weight 1/2. We are mainly interested in ω(x), because it has better
integrability properties and because the Riemann xi function is its Mellin transform. Define

A(r) =

∫ ∞
0

ω(x)e−πxr
2

dx.

Since ω(x) is balanced of weight 1/2, Lemma 4.1 implies that A(r) is a Fourier self-transform when considered
as a radial function on R3. The next result gives an explicit formula for A(r).

Proposition 4.2. A(r) is given explicitly by

(4.5) A(r) =
d2

dr2

(r
4

coth(πr)
)

= −π
2

1

sinh2(πr)
+
π2r

2

cosh(πr)

sinh3(πr)
.
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We give two short proofs of Proposition 4.2. As we remarked in the last paragraph of the previous
section, this result has an obvious interpretation as a calculation of the Laplace transform of ω(x). Several
closely related calculations have appeared in the literature; see [10, pp. 23–24], [12, eq. (2.17)], [18, pp. 168],
and especially eq. (91) of [64], which can be seen using the results of [18] to be equivalent to (4.5).

First proof of Proposition 4.2. We have directly from the definitions that∫ ∞
0

ω(x)e−πr
2x dx =

∞∑
n=1

[
2π2n4

∫ ∞
0

x2e−π(r2+n2)x dx− 3πn2

∫ ∞
0

xe−π(r2+n2)x dx

]

=

∞∑
n=1

(
4π2n4

π3(r2 + n2)3
− 3πn2

π2(r2 + n2)2

)

=
1

π

∞∑
n=1

(
4n4

(r2 + π2)3
− 3n2

(r2 + π2)2

)
=

1

2π

∞∑
n=1

d2

dr2

(
r2

r2 + n2

)

=
d2

dr2

(
1

4π
+

1

2π

∞∑
n=1

r2

r2 + n2

)
=

d2

dr2

(r
4

coth(πr)
)
.

Here, the last equality follows from the classical identity

π coth(πr) =
1

r
+

∞∑
n=1

2r

r2 + n2
,

the partial fraction decomposition of the hyperbolic cotangent function [2, p. 12]. This proves the first
equality in (4.5); the second equality is a trivial verification, which we leave to the reader. �

An alternative proof of Proposition 4.2 is based on a calculation of the moments of ω(x), which seems
worth recording separately.

Lemma 4.3. For n ≥ 0 we have the relation

(4.6)

∫ ∞
0

ω(x)xn dx =
(−1)n(4π)n+1n!

4(2n)!
B2n+2,

where (Bk)∞k=0 denotes the Bernoulli numbers.

The relation (4.6) is equivalent to the bottom-right entry in Table 1 of [12, p. 442] (see also [65] where
several analogous formulas are derived).

Proof. Recalling Euler’s formula

ζ(2m) =
(−1)m−1(2π)2m

2(2m)!
B2m,

we observe that for integer n ≥ 0,∫ ∞
0

ω(x)xn dx =

[∫ ∞
0

ω(x)xs/2−1 dx

]∣∣∣s=2n+2

= ξ(2n+ 2) =
1

2
(2n+ 2)(2n+ 1)π−n−1Γ(n+ 1)ζ(2n+ 2)

=
n!

2πn+1
(2n+ 2)(2n+ 1)

(−1)n(2π)2n+2

2(2n+ 2)!
B2n+2 =

(−1)n(4π)n+1n!

4(2n)!
B2n+2,

as claimed. �

Another easy fact that we record is the Taylor expansion of the function on the right-hand side of (4.5).

Lemma 4.4. We have the Taylor expansion

d2

dr2

(r
4

coth (πr)
)

=

∞∑
n=0

(2π)2n+1B2n+2

2(2n)!
r2n (|r| < 1).
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Proof. Recall the standard generating function identity

z

2
coth

(z
2

)
=

∞∑
n=0

B2n

(2n)!
z2n (|z| < 2π)

(see [2, p. 12]). Making the substitution z = 2πr and differentiating twice gives the result. �

Second proof of Proposition 4.2. From the above two lemmas we see that, calculating formally at
least,∫ ∞

0

ω(x)e−πr
2x dx =

∫ ∞
0

ω(x)

∞∑
n=0

(−1)nπnr2n

n!
xn dx

=

∞∑
n=0

(−1)nπnr2n

n!

∫ ∞
0

ω(x)xn dx =

∞∑
n=0

(2π)2n+1B2n+2

2(2n)!
r2n =

d2

dr2

(r
4

coth (πr)
)
.

To justify this rigorously, note that, by (2.5)–(2.6), the function ω(x) exp(−πr2x) is absolutely integrable
on [0,∞) for any complex number r satisfying |r| < 1. We have thus established the identity (4.5) for those
values of r, and, since A(r) can be regarded as an analytic function of a complex variable r on some open
set containing the positive real axis, the result follows for general r ≥ 0 by analytic continuation. �

4.3. An orthonormal basis for radial self-transforms

Recall that the Laguerre polynomials Lαn(x) are, for fixed α > −1, a family of orthogonal polynomials
with respect to the weight function e−xxα on [0,∞). Their main properties are summarized in Section A.3.
We can use them to construct functions suitable for representing radial functions on Rd by defining

G(d)
n (r) = e−πr

2

Ld/2−1
n (2πr2) (r > 0).

One main reason why this is a useful definition is that the G
(d)
n satisfy the orthogonality relation

(4.7)

∫ ∞
0

G(d)
m (r)G(d)

n (r)rd−1 dr =
Γ(n+ d/2)

2(2π)d/2n!
δm,n,

which, as the reader can verify, is immediate from the standard orthogonality relation (A.16) for the Laguerre

polynomials, by a change of variables. Equivalently, recalling that we are thinking of the G
(d)
n as functions

on Rd, we can write this as an orthogonality relation with respect to the ordinary Lebesgue measure on Rd
by interpreting the integral on the left-hand side of (4.7) as an integral in polar coordinates, which gives the
equivalent relation ∫

Rd
G(d)
m (x)G(d)

n (x) dx = κd,nδm,n,

where

κd,n = d · Vd
Γ(n+ d/2)

2(2π)d/2n!
=

d · Γ(n+ d/2)

21+d/2n!Γ(1 + d/2)
,

and Vd = πd/2

Γ( d2 +1)
denotes the volume of the unit ball in Rd.

The orthogonal family (G
(d)
n )∞n=0 is especially useful for representing radial self-transforms such as the

function A(r), thanks to the following result.

Theorem 4.5 ([50, Secs. 4.20, 4.23]). The functions G
(d)
n (r), considered as radial functions on Rd,

form an orthogonal basis of the subspace L2
rad(Rd) of L2(Rd) consisting of square-integrable radial functions.

Moreover, this orthogonal basis diagonalizes the radial Fourier transform (4.1); more precisely, we have the
property

Fd
(
G(d)
n

)
= (−1)nG(d)

n .
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The theorem implies in particular that the even-indexed functions G
(d)
2n (r) form an orthogonal basis for

the subspace of L2
rad(Rd) consisting of square-integrable radial Fourier self-transforms. This gives a new

way of representing radial self-transforms as linear combinations of the form
∑
n γnG

(d)
2n (r). Thus, we have

now shown two general ways to construct radial Fourier self-transforms: first, as weighted mixtures of scaled

Gaussians, and second, as linear combinations of the basis elements G
(d)
2n . As the next result starts to

illustrate, the interplay between these two approaches turns out to be very fruitful.

Proposition 4.6. The fn-expansion coefficients cn defined in (3.1) can be alternatively expressed as

(4.8) cn =
8
√

2πn!

(3/2)n

∫ ∞
0

A(r)r2G(3)
n (r) dr.

Proof. We start by evaluating a simpler integral, namely, for integer m ≥ 1,∫ ∞
0

A(r)e−πr
2

r2m dr =

∫ ∞
0

(∫ ∞
0

ω(x)e−πxr
2

dx

)
e−πr

2

r2m dr

=

∫ ∞
0

ω(x)

(∫ ∞
0

e−π(x+1)r2r2m dr

)
dx

=

∫ ∞
0

ω(x)

∫ ∞
0

e−u

( √
u√

π(x+ 1)

)2m
du

2
√
π(x+ 1)u

 dx

=
1

2πm+1/2
Γ

(
m+

1

2

)∫ ∞
0

ω(x)
1

(x+ 1)m+1/2
dx

=
(3/2)m−1

4πm

∫ ∞
0

ω(x)
1

(x+ 1)m+1/2
dx.

Now using the formula (A.15) for the Laguerre polynomials, we have that∫ ∞
0

A(r)r2G(3)
n (r) dr =

∫ ∞
0

A(r)r2e−πr
2

L1/2
n (2πr2) dr

=

∫ ∞
0

A(r)e−πr
2

n∑
k=0

(−1)k

k!

(
n+ 1/2

n− k

)
(2π)kr2k+2 dr

=

n∑
k=0

(−2π)k

k!

(
n+ 1/2

n− k

)∫ ∞
0

A(r)e−πr
2

r2k+2 dr

=

n∑
k=0

(−2π)k

k!

(
n+ 1/2

n− k

)
(3/2)k
4πk+1

∫ ∞
0

ω(x)(x+ 1)−(k+3/2) dx

=

∫ ∞
0

ω(x)

(
n∑
k=0

(−2π)k

k!

(
n+ 1/2

n− k

)
(3/2)k
4πk+1

(x+ 1)−(k+3/2)

)
dx

=
1

4π

∫ ∞
0

ω(x)

(x+ 1)n+3/2

(
n∑
k=0

(−2)k

k!

(
n+ 1/2

n− k

)
(3/2)k(x+ 1)n−k

)
dx.

Noting the simple relation (3/2)k
k!

(
n+1/2
n−k

)
= (3/2)n

n!

(
n
k

)
, we see that the sum inside the integral simplifies as

n∑
k=0

(3/2)k
k!

(
n+ 1/2

n− k

)
·(−2)k(x+ 1)n−k =

(3/2)n
n!

n∑
k=0

(
n

k

)
(−2)k(x+ 1)n−k

=
(3/2)n
n!

(−2 + (x+ 1))n =
(3/2)n
n!

(x− 1)n.



4.5. THE FUNCTIONS ν(x) AND B(r) 35

Thus, we get finally that∫ ∞
0

A(r)r2G(3)
n (r) dr =

(3/2)n
4πn!

∫ ∞
0

ω(x)

(x+ 1)3/2

(
x− 1

x+ 1

)n
dx =

(3/2)n

8
√

2πn!
cn,

which proves (4.8). �

We have set the stage for one of the central results of this chapter.

Theorem 4.7 (Expansion of A(r) in the orthogonal family G
(3)
n (r)). The radial function A(r) has the

series expansion

(4.9) A(r) =

∞∑
n=0

cnG
(3)
n (r),

with cn given by (3.1), (3.3) and (4.8). The series in (4.9) converges pointwise and in L2(R3).

Proof. The equation (4.9) is simply the Fourier expansion of the (clearly square-integrable) function

A(r), considered as a radial function on R3, in the orthogonal basis G
(3)
n (r). The fact that the coefficients cn

are the Fourier coefficients follows from (4.7) and (4.8) (together with the simple equality (3/2)n
8
√

2πn!
= Γ(n+3/2)

2(2π)3/2n!

relating the normalization constants appearing in those two equations). The convergence in L2(R3) is
immediate, and pointwise convergence follows from standard theorems about expansions of a function in
Laguerre polynomials; see [50, p. 88]. �

4.4. Constructing new balanced functions from old

Next, we show a simple operation that produces a balanced function of weight 2 − α starting with a
balanced function of weight α.

Lemma 4.8. Let f : (0,∞) → R be balanced of weight 0 < α < 2. Then the function g : (0,∞) → R
defined by

(4.10) g(x) =

∫ ∞
0

f(u)

(u+ x)2−α du

is a balanced function of weight 2− α.

Proof.

g

(
1

x

)
=

∫ ∞
0

f(u)

(u+ 1/x)2−α du =

∫ ∞
0

f(1/v)(
1
v + 1

x

)2−α dv

v2

=

∫ ∞
0

(vx)2−αvαf(v)

(v + x)2−α
dv

v2
= x2−α

∫ ∞
0

f(v)

(v + x)2−α dv = x2−αg(x).

�

The integral transform in (4.10) is known as a generalized Stieltjes transform. Its properties are
discussed in [43, 80]. Lemma 4.8 appears to be new.

4.5. The functions ν(x) and B(r)

Applying the construction of Lemma 4.8 to our balanced function ω(x) (with α = 1/2), we define

ν(x) =

∫ ∞
0

ω(u)

(u+ x)3/2
du,

and note that ν(x) is a balanced function of weight 3/2. Now define (as in (4.4)) the associated radial
function

B(r) =

∫ ∞
0

ν(x)e−πxr
2

dx,
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We will have much more to say about these functions below. Among other results, in Section 4.9 we will
show that B(r) is given by the explicit formula B(r) = 1 − 2rψ′(r) − r2ψ′′(r), where ψ(x) is the digamma

function. The function ν(x) and a closely related function ν̃(t) = 1√
1+t

ν
(

1−t
1+t

)
will play an important role in

our understanding of the gn-expansion (1.17) of the Riemann xi function, which we will show in Chapter 5
arises naturally from the expansion of ν̃(t) in the Chebyshev polynomials in the second kind. The same
function ν̃(t) also has an interpretation as a generating function for the fn-expansion coefficients cn; see
Section 4.9.

4.6. Some Mellin transform computations

In this section we compute the Mellin transforms of the functions A(r), B(r), ν(x), and derive two
separate Mellin transform representations for the polynomials fn. This will set the ground for the alternative
derivation of the fn-expansion mentioned at the beginning of the chapter, which will be given in the next
section, and for additional results in Sections 4.8–4.9 and Chapter 5 that will shed additional light on the
significance of the new functions we introduced.

Proposition 4.9. The Mellin transform of A(r) is given by

(4.11)

∫ ∞
0

A(r)rs−1 dr =
1

2(2π)s−1
(s− 1)(s− 2)Γ(s− 1)ζ(s− 1) (Re s > 0).

First proof. Denote F (r) = r
4 (coth(πr)− 1) = 1

2
r

e2πr−1 . Using integration by parts twice, we have∫ ∞
0

A(r)rs−1 dr =

∫ ∞
0

F ′′(r)rs−1 dr = F ′(r)rs−1
∣∣∣r=∞
r=0

− (s− 1)

∫ ∞
0

F ′(r)rs−2 dr

= 0− (s− 1)F (r)rs−2
∣∣∣r=∞
r=0

+ (s− 1)(s− 2)

∫ ∞
0

F (r)rs−3 dr

= 0 + 0 +
1

2
(s− 1)(s− 2)

∫ ∞
0

1

e2πr − 1
rs−2 dr

=
1

2
(s− 1)(s− 2)(2π)−(s−1)Γ(s− 1)ζ(s− 1).

�

Second proof.∫ ∞
0

A(r)rs−1 dr =

∫ ∞
0

∫ ∞
0

ω(x)e−πxr
2

dx rs−1 dr(4.12)

=

∫ ∞
0

ω(x)

∫ ∞
0

e−πxr
2

rs−1 dr dx

=

∫ ∞
0

ω(x)

(∫ ∞
0

e−u
( √

u√
πx

)s−1
du

2
√
πxu

)
dx

=
1

2
√
π
π−(s−1)/2Γ

(s
2

)∫ ∞
0

ω(x)x−s/2 dx

=
1

2
π−s/2Γ

(s
2

)
ξ(2− s) =

1

2
π−s/2Γ

(s
2

)
ξ(s− 1)

=
1

2
π−s/2Γ

(s
2

)
· 1

2
(s− 1)(s− 2)π−(s−1)/2Γ

(
s− 1

2

)
ζ(s− 1)

=
1

2(2π)s−1
(s− 1)(s− 2)

(
2s−2

√
π

Γ

(
s− 1

2

)
Γ
(s

2

))
ζ(s− 1).

This coincides with the right-hand side of (4.11) by the duplication formula [2, p. 22]

(4.13) Γ(z)Γ(z + 1/2) =
√
π21−2zΓ(2z).
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�

Proposition 4.10. The Mellin transform of ν(x) is given by

(4.14)

∫ ∞
0

ν(x)xs/2−1 dx =
2√
π

Γ
(s

2

)
Γ

(
3

2
− s

2

)
ξ(s− 1) (0 < Re s < 3).

(Here, as with known formulas such as (1.10), it seems more aesthetically pleasing to use s/2 as the Mellin
transform variable instead of s.)

Proof. A textbook Mellin transform computation is the result that for α > 0,

(4.15)

∫ ∞
0

ts−1

(1 + t)α
dt =

Γ(s)Γ(α− s)
Γ(α)

(0 < Re(s) < α),

since the integral on the left transforms into a beta integal
∫ 1

0
us−1(1− u)α−s−1 du upon making the substi-

tution t = u/(1− u). Using this fact, we write

∫ ∞
0

ν(x)xs/2−1 dx =

∫ ∞
0

∫ ∞
0

ω(u)

(u+ x)3/2
duxs/2−1 dx =

∫ ∞
0

ω(u)

(∫ ∞
0

xs/2−1

(u+ x)3/2
dx

)
du

=

∫ ∞
0

ω(u)

u3/2

∫ ∞
0

ts/2−1

(1 + t)3/2
dt us/2 du =

∫ ∞
0

ω(u)us/2−3/2 du ·
Γ
(
s
2

)
Γ
(

3
2 −

s
2

)
Γ
(

3
2

)
=

2√
π

Γ
(s

2

)
Γ

(
3

2
− s

2

)
ξ(s− 1).

Note that the assumption 0 < Re(s) < 3 ensures that the double integral following the first equality is
absolutely convergent (as can be seen by repeating the same chain of equalities with s replaced by Re(s)),
which justifies the change in the order of integration. �

Proposition 4.11. The Mellin transform of B(r) is given by

(4.16)

∫ ∞
0

B(r)rs−1 dr =
(2π)1−s

2 sin(πs/2)
s(s− 1)Γ(s)ζ(s) (0 < Re s < 2).

Proof. Repeat the calculation in (4.12), replacing A(r) by B(r) and replacing the Mellin transform of
ω(x) with the Mellin transform of ν(x). We omit the details. �

The following result appears to be known, although its origins and proof seem difficult to trace (it is
implicit in the results of section 1 of [16], and a more explicit version is mentioned without proof in [48,
eq. (1)] and [49, p. 829]). We include it along with a short, self-contained proof.

Proposition 4.12 (First Mellin transform representation of fn). The Mellin transform of G
(3)
n (r) is

given by

(4.17)

∫ ∞
0

G(3)
n (r)rs−1 dr =

1

2
(−i)nπ−s/2Γ

(s
2

)
fn

(
1

2i

(
s− 3

2

))
(Re s > 0)
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Proof. Again using the explicit formula (A.15) for the Laguerre polynomials, we have that

∫ ∞
0

G(3)
n (r)rs−1 dr =

∫ ∞
0

e−πr
2

L1/2
n (2πr2)rs−1 dr

=

n∑
k=0

(−1)k

k!

(
n+ 1/2

n− k

)
(2π)k

∫ ∞
0

e−πr
2

r2krs−1 dr

=

n∑
k=0

(−1)k

k!

(
n+ 1/2

n− k

)
(2π)k

∫ ∞
0

e−u
(√

u√
π

)s+2k−1
du

2
√
πu

=
1

2
π−s/2

n∑
k=0

(−2)k

k!

(
n+ 1/2

n− k

)
Γ
(s

2
+ k
)

=
1

2
π−s/2Γ

(s
2

) n∑
k=0

(−2)k

k!

(
n+ 1/2

n− k

)
s

2

(s
2

+ 1
)
· · ·
(s

2
+ k − 1

)
=

1

2
π−s/2Γ

(s
2

) n∑
k=0

(−2)k
(
n+ 1/2

n− k

)(
s/2 + k − 1

k

)
=

1

2
π−s/2Γ

(s
2

)
(−i)nfn

(
1

2i

(
s− 3

2

))
,

where in the last step we used the formula (A.25) for fn(x). This gives the claimed formula. �

If we replace s with the variable t where s = 2
(

3
4 + it

)
, (4.17) can be rewritten in the form

(4.18)

∫ ∞
0

G(3)
n (r)r

1
2 +2it dr =

1

2
(−i)nπ− 3

4−itΓ

(
3

4
+ it

)
fn (t)

which is a useful integral representation for fn(t). The next result, which we have not found in the literature,
gives yet another representation for fn(t) in terms of a Mellin transform.

Proposition 4.13 (Second Mellin transform representation of fn). We have the relation

∫ ∞
0

1

(x+ 1)3/2

(
x− 1

x+ 1

)n
xs−1 dx(4.19)

= in
2n!√
π(3/2)n

Γ(s)Γ

(
3

2
− s
)
fn

(
1

i

(
s− 3

4

)) (
0 < Re(s) <

3

2

)
.

Equivalently, with the substitution s = 3
4 + it, this can be written in the form

∫ ∞
0

1

(x+ 1)3/2

(
x− 1

x+ 1

)n
x−

1
4 +it dx = in

2n!√
π(3/2)n

Γ

(
3

4
+ it

)
Γ

(
3

4
− it

)
fn(t).(4.20)

It is interesting to compare this result with Proposition 5.11 (page 60), which gives an analogous Mellin
transform representation for the polynomials gn.
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Proof. Recalling (4.15), we have

∫ ∞
0

1

(x+ 1)3/2

(
x− 1

x+ 1

)n
xs−1 dx =

∫ ∞
0

∑n
k=0(−1)n−k

(
n
k

)
xk

(x+ 1)n+3/2
xs−1 dx

=

n∑
k=0

(−1)n−k
(
n

k

)∫ ∞
0

xk+s−1

(x+ 1)n+3/2
dx =

n∑
k=0

(−1)k−k
(
n

k

)
M
[

1

(x+ 1)n+3/2

]
(k + s)

=

n∑
k=0

(−1)n−k
(
n

k

)
Γ(k + s)Γ

(
n− k + 3

2 − s
)

Γ
(
n+ 3

2

)
=

Γ(s)Γ
(

3
2 − s

)
Γ
(
n+ 3

2

) n∑
k=0

(−1)n−k
(
n

k

)
(s(s+ 1) · · · (s+ k − 1))

×
((

3

2
− s
)(

3

2
− s+ 1

)
· · ·
(

3

2
− s+ n− k − 1

))
=

Γ(s)Γ
(

3
2 − s

)
Γ
(
n+ 3

2

) n∑
k=0

(−1)n−k
(
n

k

)
× (−1)kk!

(
−s
k

)
× (−1)n−k(n− k)!

(
s− 3/2

n− k

)

=
Γ(s)Γ

(
3
2 − s

)
Γ
(
n+ 3

2

) n!

n∑
k=0

(−1)k
(
−s
k

)(
s− 3/2

n− k

)

=
2n!√
π(3/2)n

Γ(s)Γ

(
3

2
− s
) n∑
k=0

(−1)k
(
−s
k

)(
s− 3/2

n− k

)
=

2n!√
π(3/2)n

Γ(s)Γ

(
3

2
− s
)
infn

(
1

i

(
s− 3

4

))
,

using (A.25) and the symmetry fn(−x) = (−1)nfn(x) in the last step. �

4.7. Alternative approach to the fn-expansion of Ξ(t)

The results of the preceding sections make it possible to conceive of a parallel approach to the develop-
ment of the fn-expansion of Ξ(t) that is distinct from the approach taken in Chapter 3, and relies entirely
on the elementary function A(r) rather than on its more sophisticated companion function ω(x) (or even
the function θ(x) from which ω(x) is derived).

The idea is to define A(r) directly using (4.5), and then to use (4.8) as the definition of the coefficients cn.
Theorem 4.7 and its proof remain valid. Propositions 4.9 and 4.12 also remain valid (note that, conveniently,
the first proof we gave for Proposition 4.9 does not rely on the connection between A(r) and ω(x)). We now
consider what happens when we formally take the Mellin transform of both sides of (4.9); the result is the
relation

1

2(2π)s−1
(s− 1)(s− 2)Γ(s− 1)ζ(s− 1) =

∞∑
n=0

cn ·
1

2
(−i)nπ−s/2Γ

(s
2

)
fn

(
1

2i

(
s− 3

2

))
.
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After substituting s + 1 in place of s, the left-hand side starts to resemble ξ(s), so, rearranging terms
judiciously, we see that

ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s)

=

(
Γ
(
s
2

)
Γ(s)

2sπs/2

)
·
(

1

2(2π)s
s(s− 1)Γ(s)ζ(s)

)

=

(
Γ
(
s
2

)
Γ(s)

2sπs/2

) ∞∑
n=0

cn ·
1

2
(−i)nπ−(s+1)/2Γ

(
s+ 1

2

)
fn

(
1

2i

(
s− 1

2

))

=

∞∑
n=0

(−i)ncn

(
Γ
(
s
2

)
Γ(s)

2sπs/2 × 1

2
π−(s+1)/2Γ

(
s+ 1

2

))
fn

(
1

2i

(
s− 1

2

))

=

∞∑
n=0

(−i)ncnfn
(

1

2i

(
s− 1

2

))
,

with the cancellation in the last step following from the duplication formula (4.13). Setting s = 1
2 + it, we

again recover the fn-expansion (3.4)—a satisfying result.
Note that the above approach, while it is rather intuitive and provides useful insight into the meaning

and significance of the fn-expansion, nonetheless suffers from the drawback that using (4.8) as the definition
of the coefficients cn does not make the positivity property of the even-indexed coefficients evident, nor can
we see a way to understand their asymptotic behavior directly from this definition. For this reason, the
approach we originally took in Chapter 3 seems preferable as the initial basis for developing the theory of
the fn-expansion.

4.8. Centered versions of balanced functions

If f is a balanced function of weight α, denote

(4.21) f̃(t) =
1

(1 + t)α
f

(
1− t
1 + t

)
(|t| < 1).

We refer to f̃ as the centered version of f .

Lemma 4.14. The centered version f̃ of a balanced function of weight α is an even function.

Proof. It is trivial to verify that the equation f̃(−t) = f̃(t) is algebraically equivalent to the functional
equation (4.21). �

We remark that, in the context of the modular form θ(x), the notion of its centered version was studied
in [77] (see also [93, Sec. 5.1] where a similar change of variables for modular forms was discussed).

One illustration of the relevance of the above definition is the following simple fact concerning the
centered version ω̃(t) of ω(x).

Proposition 4.15. The coefficients cn can be alternatively expressed as

(4.22) cn = 2

∫ 1

−1

ω̃(u)un du (n ≥ 0).

Proof. This is a trivial reinterpretation of the defining formula (3.1) for cn: simply make the change
of variables u = x−1

x+1 , and check that we get precisely (4.22) �

See Section 6.2 for further discussion of ω̃(t). The centered version ν̃(t) of ν(x) also has an important
role to play in connection with both the fn-expansion and the gn-expansion of the Riemann xi function, as
we shall see in the next section and later in Chapter 5.
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4.9. Properties of ν(x) and B(r)

Proposition 4.16. The function ν(x) has the following properties:
(i) ν(x) is positive and monotone decreasing.
(ii) ν(0) = π

6 .
(iii) ν(x) has the asymptotic expansions

ν(x) =

n∑
k=0

(2k + 1)πk+1B2k+2

k!
xk +O(xn+1) as x→ 0,(4.23)

ν(x) =

n∑
k=0

(2k + 1)πk+1B2k+2

k!
x−k−3/2 +O(x−n−5/2) as x→∞,(4.24)

Proof. (i) is immediate from the definition of ν(x). (ii) is a special case of (iii), but also follows more
directly from the definition of ν(x), since for x = 0 we have

ν(0) =

∫ ∞
0

ω(u)

u3/2
du = ξ(−1) = ξ(2) =

1

2
· 2 · 1 · π−1Γ(1)ζ(2) =

π

6
.

To prove (iii), first, note that (4.23) follows immediately from (4.24) using the balancedness property
of ν(x). Now, to prove (4.24) we use the technique of Mellin transform asymptotics, described, e.g., in [29,
Appendix B.7]. Let ϕ(s) = 2√

π
Γ(s)Γ( 3

2 − s)ξ(2s− 1) denote the Mellin transform of ν(x). From the Mellin

inversion formula we have

ν(x) =
1

2πi

∫ c+i∞

c−i∞
ϕ(s)x−s ds,

where c is an arbitrary number in (0, 3/2). We now shift the integration contour to the left to the line
Im(s) = −n − 3/2 and apply the residue theorem to calculate the change in the value of the integral
resulting from this contour shift. Note that the contour is unbounded, so one has to justify this use of the
residue theorem using a limiting argument involving the rate of decay of the integrand along vertical lines;
this is not hard to do using the standard facts that the xi and gamma functions both decay exponentially
fast along vertical lines (see [2, p. 21], [58, p. 121]).

With this technicality out of the way, we see that the result of the contour shift is that for each pole of the
integrand ϕ(s)x−s that this contour shift skips over, the integral (including the factor of 1

2πi in front) changes
by an amount equal to its residue. The poles being skipped over in this case are at s = 0,−1, . . . ,−n − 1,
and the residue for the pole at s = −k is equal to xk multiplied by

2√
π

(−1)k

k!
Γ

(
k +

3

2

)
ξ(−2k − 1) =

2(−1)k

k!
· (2k + 2)!

22k+2(k + 1)!
· ξ(2k + 2)

=
(−1)k(2k + 2)!

22k+1k!(k + 1)!
· 1

2
(2k + 2)(2k + 1)π−(k+1)k!ζ(2k + 2)

=
(−1)k(2k + 2)!

22k+1k!(k + 1)!
· 1

2
(2k + 2)(2k + 1)π−(k+1)k! · (−1)k(2π)2k+2

2(2k + 2)!
B2k+2

=
(2k + 1)πk+1

k!
B2k+2.
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Thus, following the contour shift we get the alternative expression

ν(x) =
1

2πi

∫ −(n+3/2)+i∞

−(n+3/2)−i∞
ϕ(s)x−s ds+

n+1∑
k=0

(2k + 1)πk+1

k!
B2k+2x

k

=

n+1∑
k=0

(2k + 1)πk+1

k!
B2k+2x

k + xn+3/2O

(∫ −(n+3/2)+i∞

−(n+3/2)−i∞
|ϕ(s)| ds

)

=

n∑
k=0

(2k + 1)πk+1

k!
B2k+2x

k +O(xn+1),

as claimed. �

The next result shows that ν̃ can be thought of as a generating function for the coefficient sequence
(cn)∞n=0, providing another illustration of why ν(x) and ν̃(t) are interesting functions to study.

Theorem 4.17 (The function ν̃(t) as a generating function for the sequence (cn)∞n=0). The centered
function ν̃(t) has the power series expansion

(4.25) ν̃(t) =
1

2
√

2

∞∑
n=0

(−1)n(3/2)n
n!

cnt
n (|t| < 1).

Proof. Noting the Taylor expansion
∞∑
n=0

(3/2)n
n!

zn = (1− z)−3/2,

we write

ν̃(t) =
1

(1 + t)3/2
ν

(
1− t
1 + t

)
=

1

(1 + t)3/2

∫ ∞
0

ω(u)(
u+ 1−t

1+t

)3/2
du

=

∫ ∞
0

ω(u) (1− t+ u+ tu)
−3/2

du =

∫ ∞
0

ω(u)

(u+ 1)3/2

(
1 + t

u− 1

u+ 1

)−3/2

du

=

∫ ∞
0

ω(u)

(u+ 1)3/2

( ∞∑
n=0

(−1)n(3/2)n
n!

(
u− 1

u+ 1

)n
tn

)
du

=

∞∑
n=0

(−1)n(3/2)n
n!

(∫ ∞
0

ω(u)

(u+ 1)3/2

(
u− 1

u+ 1

)n
du

)
tn =

1

2
√

2

∞∑
n=0

(−1)n(3/2)n
n!

cnt
n,

as claimed. �

Note that the power series (4.25) also converges for t = 1 (as is immediately apparent from the asymptotic
rate of decay of the coefficients c2n), and, by Proposition 4.16(ii), its value there is given explicitly by

ν̃(1) =
1

(1 + 1)3/2
ν

(
1− 1

1 + 1

)
=

1

2
√

2
ν(0) =

π

12
√

2
.

That is, we have the summation identity
∞∑
n=0

(3/2)2n

(2n)!
c2n =

π

6
.

Next, we mention another curious integral representation expressing ν(x) in terms of A(r).

Proposition 4.18. The function ν(x) can be expressed in terms of A(r) as

ν(x) = 4π

∫ ∞
0

A(r)r2e−πxr
2

dr.
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Proof. As pointed out to us by Jim Pitman, this is a special case of a standard relation expressing the
generalized Stieltjes transform of a function in terms of its Laplace transform. In our notation, we have that∫ ∞

0

A(r)r2e−πxr
2

dr =

∫ ∞
0

(∫ ∞
0

ω(t)e−πtr
2

dt

)
r2e−πxr

2

dr

=

∫ ∞
0

ω(t)

(∫ ∞
0

r2e−π(x+t)r2 dr

)
dt

=

∫ ∞
0

ω(t)

(
1

2
Γ

(
3

2

)
1

π3/2(x+ t)3/2

)
dt =

1

4π
ν(x).

�

Next, we turn to examining the function B(r). As it turns out, it can be evaluated explicitly in terms
of the digamma function.

Proposition 4.19. The function B(r) is given explicitly by

(4.26) B(r) = 1− 2rψ′(r)− r2ψ′′(r),

where ψ(x) = Γ′(x)
Γ(x) is the digamma function.

Combining this with Lemma 4.1, we obtain the following result, which seems to be new (compare with
[11, Sec. 5.3], [84, Sec. 9.12], [94] where some results with a similar flavor are discussed).

Corollary 4.20. The function 1−2rψ′(r)− r2ψ′′(r) is a Fourier self-transform, considered as a radial
function on R. That is, it satisfies the integral equation

F (ρ) = 2

∫ ∞
0

F (r) cos(2πrρ) dr (ρ ≥ 0).

First proof of Proposition 4.19. Denote β(r) = 1−2rψ′(r)−r2ψ′′(r). The proof that B(r) = β(r)
is based on computing the Mellin transform of β(r). If we succeed in showing that this Mellin transform is
defined for 0 < Re(s) < 2 and is equal to the function given in (4.16), the equality B(r) = β(r) will follow
from the standard uniqueness theorem for the Mellin transform.

We recall some useful facts about the digamma function and its derivatives [1, p. 260]. Start with the
well-known partial fraction decomposition

ψ(r + 1) = −γ +

∞∑
n=1

(
1

n
− 1

r + n

)
,

where γ denotes the Euler-Mascheroni constant. Repeated differentiation gives the also-standard expansion

(4.27) ψ(m)(r + 1) = (−1)m+1
∞∑
n=1

m!

(r + n)m+1
(m ≥ 1).

The Taylor expansion of ψ(m)(r + 1) around r = 0 is given by

(4.28) ψ(m)(r + 1) =

∞∑
k=0

(−1)m+k+1(k + 1)(k + 2) · · · (k +m)ζ(k +m+ 1)rk (m ≥ 1),

and its asymptotic expansion as r →∞ (with m ≥ 1, N ≥ 0 fixed) is

(4.29) ψ(m)(r + 1) = (−1)m+1
N∑
k=0

(k +m− 1)!

k!

Bk
(r + 1)k+m

+O

(
1

rN+m+1

)
(r →∞).

With this preparation, the Mellin transform of derivatives of ψ(r+1) can be evaluated through termwise
integration of the terms of (4.27). After a short computation using (4.15) and the reflection formula Γ(z)Γ(1−
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z) = π
sin(πz) , we get that∫ ∞

0

ψ(m)(r + 1)rs−1 dr = −π(s− 1)(s− 2) · · · (s−m)

sin(πs)
ζ(m+ 1− s) (0 < Re(s) < m)(4.30)

for m ≥ 1 (a variant of this formula is mentioned in [30, p. 659, eq. 6.473]; see also [28, p. 325, eq. (7)]). Note
that the strip of convergence for each of the individual Mellin transforms being summed is 0 < Re(s) < m+1,
and the requirement of absolute summability imposes the further restriction Re(s) < m (apparent in the
zeta-term ζ(m+ 1− s), which blows up as Re(s) approaches m from the left).

Building on the facts discussed above, we can approach the computation of the Mellin transform of β(r).
First, note that, because of the standard identity ψ(x+ 1) = ψ(x) + 1

x , β(r) can be rewritten as

β(r) = 1− 2rψ′(r + 1)− r2ψ′′(r + 1).

By (4.28)–(4.29), the asymptotic behavior of β(r) for r near 0 and ∞ is given by

β(r) = 1− π2

3
r +O(r2) as r → 0,(4.31)

β(r) =
1

6r2
+O

(
r−4
)

as r →∞.(4.32)

This implies that the Mellin transform of β(r) is defined for 0 < Re(s) < 2. Also of some interest is the
function β(r)− 1 and its own Mellin transform. Again by (4.31)–(4.32), it follows that the Mellin transform
of β(r)− 1 is defined for −1 < Re(s) < 0. Using (4.30), it is readily evaluated for such s to be∫ ∞

0

(β(r)− 1)rs−1 dr =

∫ ∞
0

(
−2ψ′(r + 1)rs − ψ′′(r + 1)rs+1

)
dr(4.33)

=
πs(s− 1)

sin(πs)
ζ(1− s) (−1 < Re(s) < 0).

Now, this isn’t exactly what we want, both because of the irksome “−1” term in the integrand and because
the range of validity of the formula is disjoint from the range 0 < Re(s) < 2 we are interested in. We
can nonetheless exploit this identity to get what we need through a trick involving analytic continuation.
Namely, for s satisfying 0 < Re(s) < 2, we can try to evaluate the Mellin transform of β(r) by performing
an integration by parts, which gives that (under the stated assumptions on s)∫ ∞

0

β(r)rs−1 dr =
1

s
β(r)rs

∣∣∣r=∞
r=0

− 1

s

∫ ∞
0

β′(r)rs+1 dr = −1

s

∫ ∞
0

β′(r)rs+1 dr =: K(s).

Moreover, examining the asymptotic behavior of β′(r) near r = 0 and r =∞ (which, the reader can confirm
using (4.28)–(4.29), is simply that obtained by differentiating the terms in (4.31)–(4.32) termwise, including
the big-O term), we see that the Mellin transform of β′(r) converges (and is an analytic function) in the
strip 0 < Re(s) < 3, which implies that K(s) is an analytic function in the strip −1 < Re(s) < 2. But for
s satisfying −1 < Re(s) < 0, performing a similar integration by parts as the one above starting with the
integral in (4.33) gives∫ ∞

0

(β(r)− 1)rs−1 dr =
1

s
(β(r)− 1)rs

∣∣∣r=∞
r=0

− 1

s

∫ ∞
0

d

dr
(β(r)− 1)rs+1 dr

= −1

s

∫ ∞
0

d

dr
(β(r)− 1)rs+1 dr = −1

s

∫ ∞
0

β′(r)rs+1 dr = K(s),

the same analytic function evaluated on a different part of its domain of definition. Since K(s) is analytic
and given by the formula found in (4.33) for −1 < Re(s) < 0, by the principle of analytic continuation it is
also equal to the same expression for 0 < Re(s) < 2. That is, we have shown that

(4.34)

∫ ∞
0

β(r)xs−1 dx =
πs(s− 1)

sin(πs)
ζ(1− s) (0 < Re(s) < 2).

Finally, using the functional equation of the Riemann zeta function it is easy to check that the function on
the right-hand side of (4.34) is equal to the one on the right-hand side of (4.16). This shows that the Mellin
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transforms of β(r) and B(r) coincide (in their “natural” region of definition where the Mellin transform of
both converges), and finishes the proof. �

Second proof of Proposition 4.19. A second method is to use Mellin inversion to represent B(r)
in terms of its Mellin transform found in (4.16), namely as

B(r) =
1

2πi

∫ c+i∞

c−i∞

(2π)1−s

2 sin(πs/2)
s(s− 1)Γ(s)ζ(s)r−s ds,

where c is an arbitrary number in (0, 2). Fix an integer n ≥ 1, and shift the integration contour to the left
to the line Im(s) = −n − 1/2. As in the proof of Proposition 4.16, we can use the residue theorem (with
the same arguments to justify its application in this setting involving unbounded contours) to calculate the
change in the value of the integral by looking at the poles of the integrand being skipped over and their
residues. The relevant poles in this case are at s = 0,−1, . . . ,−n. We leave to the reader to verify that the
residue at s = 0 is equal to 1, and that for any k ≥ 1, the pole at −k has residue (−1)kk(k + 1)ζ(k + 1)rk.
We therefore get that

B(r) = 1 +

n∑
k=1

(−1)kk(k + 1)ζ(k + 1)rk +
1

2πi

∫ (n+1/2)+i∞

−(n+1/2)−i∞

(2π)1−s

2 sin(πs/2)
s(s− 1)Γ(s)ζ(s)r−s ds.

Assume that 0 < r < 1. In this case it can be shown without much difficulty that the integral converges to
0 as n→∞ (this becomes easier to do if one first replaces the Mellin transform of B(r) in the integrand by
the simpler expression on the right-hand side of (4.34), which as we commented above in fact represents the
same function). The conclusion is that B(r) is represented for 0 < r < 1 by a convergent Taylor series

B(r) = 1 +

∞∑
k=1

(−1)kk(k + 1)ζ(k + 1)rk.

But this is consistent with (and implies) (4.26): using (4.28), one can check easily that the function β(r) =
1−2rψ′(r+ 1)− r2ψ′′(r+ 1) has the same Taylor expansion. This proves (4.26) for 0 < r < 1, and the claim
follows for general r by analytic continuation. �



CHAPTER 5

Expansion of Ξ(t) in the polynomials gn

In this chapter we continue to build on the tools developed in Chapters 3 and 4, in order to derive an
infinite series expansion for the Riemann xi function in yet another family of orthogonal polynomials, the
family (gn(x))∞n=0, and study its properties. As we discussed briefly in the Introduction, the polynomials gn
are defined by

gn(x) = pn

(
x;

3

4
,

3

4
,

3

4
,

3

4

)
= in(n+ 1) 3F2

(
−n, n+ 2,

3

4
+ ix;

3

2
,

3

2
; 1

)
,

where pn(x; a, b, c, d) denotes the continuous Hahn polynomial with parameters a, b, c, d. They form a family

of orthogonal polynomials with respect to the weight function
∣∣Γ ( 3

4 + ix
)∣∣4 on R. Their main properties are

summarized in Section A.5.

5.1. Main results

As in Chapters 2 and 3, we start by defining a sequence of numbers (dn)∞n=0 that will play the role of
the coefficients associated with the new expansion. Define

dn =
(3/2)n

2n−3/2n!

∫ ∞
0

ω(x)

(x+ 1)3/2

(
x− 1

x+ 1

)n
2F1

(
n

2
+

3

4
,
n

2
+

5

4
;n+ 2;

(
x− 1

x+ 1

)2
)
dx.(5.1)

As a first step towards demistifying this somewhat obscure definition, we expand the 2F1 term in an
infinite series. Momentarily ignoring issues of convergence, we have that

dn =
(3/2)n

2n−3/2n!

∫ ∞
0

ω(x)

(x+ 1)3/2

(
x− 1

x+ 1

)n [ ∞∑
m=0

(
n
2 + 3

4

)
m

(
n
2 + 5

4

)
m

m!(n+ 2)m

(
x− 1

x+ 1

)2m
]
dx(5.2)

=
(3/2)n

2n−3/2n!

∞∑
m=0

(
n
2 + 3

4

)
m

(
n
2 + 5

4

)
m

m!(n+ 2)m

∫ ∞
0

ω(x)

(x+ 1)3/2

(
x− 1

x+ 1

)n+2m

dx

=
(3/2)n
2nn!

∞∑
m=0

(
n
2 + 3

4

)
m

(
n
2 + 5

4

)
m

m!(n+ 2)m
cn+2m =

n+ 1

2n

∞∑
m=0

(3/2)n+2m

4mm!(n+m+ 1)!
cn+2m,

where in the last step we use the relation
(
n
2 + 3

4

)
m

(
n
2 + 5

4

)
m

= (3/2)n+2m

22m(3/2)n
. In addition to being an interesting

way to express dn in terms of the coefficients ck, this suggests a relatively simple way to see that the integral
(5.1) converges absolutely (which would also justify the above formal computation); namely, letting

c′n =

∫ ∞
0

ω(x)

(x+ 1)3/2

∣∣∣∣x− 1

x+ 1

∣∣∣∣n dx,
46
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we have the simple relations c′r ≥ c′r+1, c′2r = c2r, and therefore (using (3.6), or some easy corollary of

Lemma 3.5) get that c′r ≤ Ke−M
√
r for all r ≥ 0 and some constants K,M > 0. This then gives that∫ ∞

0

∣∣∣∣∣ ω(x)

(x+ 1)3/2

(
x− 1

x+ 1

)n
2F1

(
n

2
+

3

4
,
n

2
+

5

4
;n+ 2;

(
x− 1

x+ 1

)2
)∣∣∣∣∣ dx(5.3)

≤
∞∑
m=0

(
n
2 + 3

4

)
m

(
n
2 + 5

4

)
m

m!(n+ 2)m

∫ ∞
0

∣∣∣∣∣ ω(x)

(x+ 1)3/2

(
x− 1

x+ 1

)n+2m
∣∣∣∣∣ dx

=

∞∑
m=0

(
n
2 + 3

4

)
m

(
n
2 + 5

4

)
m

m!(n+ 2)m
c′n+2m =

(n+ 1)!

(3/2)n

∞∑
m=0

(3/2)n+2m

4mm!(n+m+ 1)!
c′n+2m

≤ K (n+ 1)!

(3/2)n

∞∑
m=0

(3/2)n+2m

4mm!(n+m+ 1)!
e−M

√
n+2m

≤ 2K
(n+ 1)!

(3/2)n

∞∑
m=0

(2)n+2m

22m+1m!(n+m+ 1)!
e−M

√
n+2m

= 2K
(n+ 1)!

(3/2)n

∞∑
m=0

1

22m+1

(
n+ 2m+ 1

m

)
e−M

√
n+2m

≤ 2n+1K
(n+ 1)!

(3/2)n

∞∑
m=0

e−M
√
n+2m <∞,

establishing the absolute convergence.
We summarize the above observations as a proposition.

Proposition 5.1. (i) The integral defining dn converges absolutely for all n ≥ 0.
(ii) We have d2n+1 = 0 for all n ≥ 0.
(iii) We have d2n > 0 for all n ≥ 0.
(iv) dn can be expressed alternatively in terms of the coefficients ck as

(5.4) dn =
n+ 1

2n

∞∑
m=0

(3/2)n+2m

4mm!(n+m+ 1)!
cn+2m.

We are ready to formulate the main results concerning the expansion of Ξ(t) in the polynomials gn,
which are precise analogues of Theorem 2.1 and 2.7 in Chapter 2 and Theorem 3.1 and 3.2 in Chapter 3.

Theorem 5.2 (Infinite series expansion for Ξ(t) in the polynomials gn). The Riemann xi function has
the infinite series representation

(5.5) Ξ(t) =

∞∑
n=0

(−1)nd2ng2n

(
t

2

)
which converges uniformly on compacts for all t ∈ C. More precisely, for any compact set K ⊂ C there exist
constants C1, C2 > 0 depending on K such that

(5.6)

∣∣∣∣∣Ξ(t)−
N∑
n=0

(−1)nd2ng2n

(
t

2

)∣∣∣∣∣ ≤ C1e
−C2N

2/3

holds for all N ≥ 0 and t ∈ K.

Theorem 5.3 (Asymptotic formula for the coefficients d2n). The asymptotic behavior of d2n for large
n is given by

(5.7) d2n =
(

1 +O
(
n−1/10

))
Dn4/3 exp

(
−En2/3

)
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as n→∞, where D,E are constants given by

(5.8) D =
128× 21/3π2/3e−2π/3

√
3

, E = 3(4π)1/3.

As in Chapters 2 and 3, we note the fact that the coefficients dn can be computed as inner products in

the L2-space L2(R,
∣∣Γ ( 3

4 + it
2

)∣∣4).

Corollary 5.4. The coefficients dn can be alternatively expressed as

(5.9) dn =
8

π3
(−i)n

∫ ∞
−∞

Ξ(t)gn

(
t

2

) ∣∣∣∣Γ(3

4
+
it

2

)∣∣∣∣4 dt.
Proof. Repeat the arguments in the proofs of Corollaries 2.2 and 3.3. �

5.2. Proof of Theorem 5.2

The next two lemmas are analogues of Lemmas 2.4 and 2.6 in Chapter 2 and Lemmas 3.4 and 3.5 in
Chapter 3.

Lemma 5.5. The polynomials gn(x) satisfy the bound

(5.10) |gn(x)| ≤ C1e
C2n

1/3

for all n ≥ 0, uniformly as x ranges over any compact set K ⊂ C, with C1, C2 > 0 being constants that
depend on K but not on n.

Proof. This is identical to the proof of Lemma 3.4, except that the use of the recurrence relation
(A.27) is replaced by the analogous relation (A.38) for the sequence gn(x), with the result that some small
modifications need to be made to the constants in the proof. We leave the details as an exercise. �

Lemma 5.6. There exist constants J1, J2 > 0 such that for all n ≥ 0, the bound

1

2n

∫ ∞
0

ω(x)

(x+ 1)3/2

∣∣∣∣∣
(
x− 1

x+ 1

)n
2F1

(
n

2
+

3

4
,
n

2
+

5

4
;n+ 2;

(
x− 1

x+ 1

)2
)∣∣∣∣∣ dx ≤ J1e

−J2n2/3

(5.11)

holds.

Proof. Note that this is a stronger version of the finiteness bound (5.3) that makes explicit the depen-
dence of the bound on n. To prove it, we refer back to the penultimate line of (5.3) and proceed from there

a bit more economically than before. Multiplying by 1
2n and using the trivial fact that (n+1)!

(3/2)n
≤ 2n, we get

that the integral in (5.11) (together with the leading factor of 1
2n ) is bounded from above by

4Kn

∞∑
m=0

1

2n+2m+1

(
n+ 2m+ 1

m

)
e−M

√
n+2m

= 4Kn

[ ∑
m≤ 1

8M2/3
n4/3

1

2n+2m+1

(
n+ 2m+ 1

m

)
e−M

√
n+2m +

∑
m> 1

8M2/3
n4/3

e−M
√
n+2m

]

(with the same constants K,M appearing in (5.3)). We will show that each of the two sums in this last
expression satisfies a bound of the sort we need. For the second sum, observe that it is bounded by the
integral ∫ ∞

1

8M2/3
n4/3−1

e−M
√
n+2x dx,

and this integral is O
(

exp
(
−M

2/3

2 n2/3
))

, by the relation∫ ∞
A

e−M
√
n+2x =

1

M2
(M
√
n+ 2A+ 1)e−M

√
n+2A.
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To estimate the first sum, we claim that the terms in that sum are increasing as a function of m for all large
enough (but fixed) n; this would imply that the sum is bounded for large n by 1

8M2/3n
4/3 times the last

term, which in turn is at most O
(

exp
(
−M

2/3

2 n2/3
))

, and hence, when combined with the estimates above,

would imply the claim of the lemma.
To prove the claim, observe that the ratio of successive terms in the sum is

1
2n+2m+3

(
n+2m+3
m+1

)
e−M

√
n+2m+2

1
2n+2m+1

(
n+2m+1

m

)
e−M

√
n+2m

=
(n+ 2m+ 2)(n+ 2m+ 3)

4(m+ 1)(n+m+ 2)
eM(

√
n+2m−

√
n+2m+2)(5.12)

≥
(
m+ n

2

)2
(m+ 1)(m+ n+ 2)

(
1− M√

m+ n
2

)

=

(
m+ n

2

)2(
m+ n

2

)2 − (n2

4 − 3m− n− 2
) (1− M√

m+ n
2

)
.

Our claim is equivalent to the statement that, under the assumption m ≤ 1
8M2/3n

4/3, the last expression in
(5.12) is ≥ 1. Equivalently, we need to show that the inequality

(5.13) 1−
n2

4 − 3m− n− 2(
m+ n

2

)2 ≤ 1− M√
m+ n

2

holds for those values of m. This reduces after some further simple algebra to verifying the inequality

(5.14) m+
n

2
≤ 1

M2/3

(
n2

4
− 3m− n− 2

)2/3

.

To check this, assume that n is large enough so that the inequalities

(5.15) 3

(
1

8M2/3

)
n4/3 + n+ 2 ≤ n2

8
,

n

2
≤ 1

8M2/3
n4/3

are satisfied. Then, together with our assumption on m, that also implies that

n2

8
≤ n2

4
− 3m− n− 2,

and therefore also that

m+
n

2
≤ 1

8M2/3
n4/3 +

1

8M2/3
n4/3 =

1

4M2/3
n4/3 =

1

M2/3

(
n2

8

)2/3

≤ 1

M2/3

(
n2

4
− 3m− n− 2

)2/3

.

This verifies (5.14), hence also (5.13), for all n satisfying (5.15) (which clearly includes all values of n larger
than some fixed N0), and therefore finishes the proof of the claim and also of the lemma. �

We need one final bit of preparation before proving Theorem 5.2. Recall that in the proof of Theorem 3.1,
a key idea was the observation that the integration kernel xs/2−1 can be related to the generating function
of the polynomials fn(t/2). The next lemma shows a way of representing the same generating function as
an infinite series involving the polynomials gn(t/2).

Lemma 5.7. For w ∈ C and |z| < 1, we have the identity

∞∑
n=0

fn(w)zn =

∞∑
n=0

(3/2)n
2nn!

gn(w) 2F1

(
n

2
+

3

4
,
n

2
+

5

4
;n+ 2;−z2

)
zn.

Proof. Using the relation (A.44) expressing the polynomial fn in terms of the gk’s, we can write

(5.16)

∞∑
n=0

fn(w)zn =

∞∑
n=0

 (3/2)n
2n(n+ 1)!

bn/2c∑
m=0

(−1)m(n− 2m+ 1)

(
n+ 1

m

)
gn−2m(w)

 zn.
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The claim will follow by suitably rearranging the terms in this double summation. First, let us check that
this is permitted by showing that the sum is in fact absolutely convergent. Indeed, using Lemma 5.5 to
bound |gn−2m(w)| (with w being fixed and the resulting constants C1, C2 depending on w but not on n,m),
we see that

∞∑
n=0

bn/2c∑
m=0

(3/2)n
2n(n+ 1)!

∣∣∣∣(−1)m(n− 2m+ 1)

(
n+ 1

m

)
gn−2m(w)

∣∣∣∣ · |z|n
≤
∞∑
n=0

(3/2)n
2n(n+ 1)!

(n+ 1)2n+1 × C1e
C2n

1/3

|z|n = 2C1

∞∑
n=0

(n+ 1)eC2n
1/3

|z|n <∞.

With absolute convergence established, we can rewrite the double sum in (5.16), introducing a new summa-
tion index k = n− 2m in place of the index n, as

∞∑
k=0

∞∑
m=0

(3/2)k+2m

2k+2m(k + 2m+ 1)!
(−1)m(k + 1)

(
k + 2m+ 1

m

)
gk(w)zk+2m

=

∞∑
k=0

(3/2)k
2kk!

gk(w)zk

( ∞∑
m=0

(−z2)m

m!

(3/2)k+2m

(3/2)k22m

(k + 1)!

(k +m+ 1)!

)

=

∞∑
k=0

(3/2)k
2kk!

gk(w)zk

( ∞∑
m=0

(
k
2 + 3

4

)
m

(
k
2 + 5

4

)
m

m!(k + 2)m

(
−z2

)m)

=

∞∑
k=0

(3/2)k
2kk!

gk(w)zk2F1

(
k

2
+

3

4
,
k

2
+

5

4
; k + 2;−z2

)
,

as was the claim to prove. �

We are ready to prove (5.6). The calculation parallels that in the proofs of Theorems 2.1 and 3.1.
Namely, start by estimating in a fairly simple-minded way that∣∣∣∣∣Ξ(t)−

N∑
n=0

(−1)2nd2ng2n

(
t

2

) ∣∣∣∣∣ =

∣∣∣∣∣Ξ(t)−
2N∑
n=0

indngn

(
t

2

)∣∣∣∣∣(5.17)

=

∣∣∣∣∣
∫ ∞

0

ω(x)

(
x−

3
4 + it

2 −
2N∑
n=0

in
(3/2)n

2n−3/2n!

1

(x+ 1)3/2

(
x− 1

x+ 1

)n
× 2F1

(
n

2
+

3

4
,
n

2
+

5

4
;n+ 2;

(
x− 1

x+ 1

)2
)
gn

(
t

2

))
dx

∣∣∣∣∣
≤
∫ ∞

0

ω(x)

∣∣∣∣∣x− 3
4 + it

2 −
2N∑
n=0

in
(3/2)n

2n−3/2n!

1

(x+ 1)3/2

(
x− 1

x+ 1

)n
× 2F1

(
n

2
+

3

4
,
n

2
+

5

4
;n+ 2;

(
x− 1

x+ 1

)2
)
gn

(
t

2

) ∣∣∣∣∣ dx.
By (3.12) and Lemma 5.7 (with z = i(x− 1)/(x+ 1)), the kernel x−

3
4 + it

2 can be expanded as

x−
3
4 + it

2 =

∞∑
n=0

in
(3/2)n

2n−3/2n!

1

(x+ 1)3/2

(
x− 1

x+ 1

)n
2F1

(
n

2
+

3

4
,
n

2
+

5

4
;n+ 2;

(
x− 1

x+ 1

)2
)
gn

(
t

2

)
.
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Continuing the chain of inequalities (5.17), we therefore get that∣∣∣∣∣Ξ(t)−
N∑
n=0

(−1)2nd2ng2n

∣∣∣∣∣
≤
∫ ∞

0

ω(x)

(x+ 1)3/2

∣∣∣∣∣
∞∑

n=2N+1

in
(3/2)n

2n−3/2n!

(
x− 1

x+ 1

)n
2F1

(
n

2
+

3

4
,
n

2
+

5

4
;n+ 2;

(
x− 1

x+ 1

)2
)
gn

(
t

2

) ∣∣∣∣∣ dx
≤
∫ ∞

0

ω(x)

(x+ 1)3/2

∞∑
n=2N+1

(3/2)n
2n−3/2n!

∣∣∣∣x− 1

x+ 1

∣∣∣∣n
∣∣∣∣∣2F1

(
n

2
+

3

4
,
n

2
+

5

4
;n+ 2;

(
x− 1

x+ 1

)2
)∣∣∣∣∣ ·

∣∣∣∣gn( t2
)∣∣∣∣ dx

=

∞∑
n=2N+1

(3/2)n
2n−3/2n!

∣∣∣∣gn( t2
)∣∣∣∣ ∫ ∞

0

ω(x)

(x+ 1)3/2

∣∣∣∣x− 1

x+ 1

∣∣∣∣n
∣∣∣∣∣2F1

(
n

2
+

3

4
,
n

2
+

5

4
;n+ 2;

(
x− 1

x+ 1

)2
)∣∣∣∣∣ dx.

Appealing to (5.10) (with a fixed compact set K on which we are allowing t to range) and finally to (5.11),
we see that this last expression is bounded by

∞∑
n=2N+1

(3/2)n
2n−3/2n!

C1e
C2n

1/3

∫ ∞
0

ω(x)

(x+ 1)3/2

∣∣∣∣x− 1

x+ 1

∣∣∣∣n
∣∣∣∣∣2F1

(
n

2
+

3

4
,
n

2
+

5

4
;n+ 2;

(
x− 1

x+ 1

)2
)∣∣∣∣∣ dx

≤
∞∑

n=2N+1

(3/2)n
2n−3/2n!

C1e
C2n

1/3

× J1e
−J2n2/3

= O(e−
J2
2 n

2/3

)

as n→∞; this gives (5.6) and finishes the proof. �

5.3. Asymptotic analysis of the coefficients d2n

In this section we prove Theorem 5.3. We will give two independent proofs of this result, one relying on
the representation (5.4) of the coefficients d2n in terms of the coefficients c2k—whose asymptotic behavior
we already analyzed—and another relying on a separate representation of d2n as a double integral, which
seems of independent interest.

First proof of Theorem 5.3. Our starting point is the formula (5.4). We start by rewriting this
relation in a form that’s slightly more convenient for asymptotics, namely as

d2n =
2n+ 1

22n

∞∑
m=0

(3/2)2n+2m

22mm!(2n+m+ 1)!
c2n+2m

=
2n+ 1

22n

∞∑
m=0

(4n+ 4m+ 2)!

24n+6m+1m!(2n+m+ 1)!(2n+ 2m+ 1)!
c2n+2m

=
1

2
(2n+ 1)

∞∑
k=n

1

26k

(4k + 2)!

(k − n)!(k + n+ 1)!(2k + 1)!
c2k,

substituting k = n+m in the last step. Making use of (3.6), we get that

d2n =
(

1 +O
(
n−1/10

))
128
√

2π3/2n

∞∑
k=n

k3/2

k + n
· (4k)!

26k(k − n)!(k + n)!(2k)!
e−4
√
πk

=
(

1 +O
(
n−1/10

))
128
√

2π3/2n

∞∑
k=n

k3/2

k + n
· 1

24k

(
4k

2k

)
× 1

22k

(
2k

k − n

)
e−4
√
πk,

where for convenience the terms have been simplified slightly by making use of trivial approximations
such as 4k + 2 = (1 + O(n−1))4k, etc.; the errors in these approximations are absorbed into the lead-
ing

(
1 +O

(
n−1/10

))
factor. By Stirling’s approximation, the binomial coefficients in the summand have
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asymptotic behavior

1

24k

(
4k

2k

)
=
(
1 +O

(
n−1

)) 1√
2πk

(k ≥ n, n→∞),

1

22k

(
2k

k − n

)
=

(
1 +O

(
1

k − n

)) √
k√

π(k − n)(k + n)

×

((
k − n
k

)−(k−n)(
k + n

k

)−(k+n)
)

(k ≥ n, n→∞),

Here, the error term
(
1 +O(k − n)−1

)
is slightly bothersome as it makes it necessary to separately bound

the summands for values of k near n, but this is easy enough to do: observe that if n ≤ k ≤ 2n then
k − n ≤ k/2, and in this case we have for some constant C > 0 independent of n that(

2k

k − n

)
≤
(

2k

dk/2e

)
≤ C(1.8)2k,

using Stirling’s formula or a well-known bound such as [4, p. 113, Eq. (4.7.1)]. Thus, combining the latest
estimates we obtain the expression

d2n =
(

1 +O
(
n−1/10

))
128
√
πn(5.18)

×

[ ∞∑
k=2n

k3/2

(k + n)3/2(k − n)1/2

((
k − n
k

)−(k−n)(
k + n

k

)−(k+n)
)
e−4
√
πk +O

(
(0.9)2n

) ]

=
(

1 +O
(
n−1/10

))
128
√
πn

∞∑
k=2n

k3/2

(k + n)3/2(k − n)1/2
exp

(
n2/3φn

(
k

n4/3

))
,

where we denote

φn(t) =
−(n4/3t− n) log

(
1− n−1/3

t

)
− (n4/3t+ n) log

(
1 + n−1/3

t

)
n2/3

− 4
√
πt.

We are now in a position to apply what is essentially a variant of Laplace’s method in the setting of a discrete
sum. The following claims about the functions φn(t) are clearly relevant.

Lemma 5.8. (i) The inequality

(5.19) φn(t) ≤ F (t) := −1

t
− 4
√
πt

holds for all n ≥ 1 and t ≥ 2n−1/3.
(ii) We have the asymptotic relation

(5.20) φn(t) = F (t)− 1

6t3
n−2/3 +O

(
1

n4/3

)
as n→∞

(
with

1

10
≤ t ≤ 10

)
,

where the constant implicit in the big-O is independent of n and t, subject to the specified constraint.

Proof. Consider the function of a real variable 0 < x < 1 given by

p(x) = −
(

1

x
− 1

)
log(1− x)−

(
1

x
+ 1

)
log(1 + x).

It is easy to verify that p(x) has the Taylor expansion

p(x) = −x− x3

6
− x5

3× 5
− x7

4× 7
− x9

5× 9
− . . . = −

∞∑
m=1

x2m−1

m(2m− 1)
.

In particular, p(x) ≤ −x for all 0 ≤ x < 1. Substituting x = 1/(n1/3t) gives the first claim of the lemma, and
the second claim is obtained from the same substitution applied to the fact that p(x) = −x− 1

6x
3 + O(x5)

for 0 ≤ x ≤ 1/2. �
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Some additional easy facts to note are that the function F (t) has a unique global maximum at t = α0 :=
(4π)−1/3; that F (t) is increasing on (0, α0) and decreasing on (α0,∞); that F (α0) = −E (where E is defined
in (5.8)), and that F ′′(α0) = −6π. In particular, we have the Taylor expansion

(5.21) F (t) = −E − 3π(t− α0)2 +O
(
|t− α0|3

) (
1

10
≤ t ≤ 10

)
.

Now, split up the sum in (5.18) (without the leading numerical constant) into four parts, representing

it as S
(1)
n + S

(2)
n + S

(3)
n + S

(4)
n , where

S(1)
n =

∑
k : 2n≤k<α0n4/3−n19/18

k3/2

(k + n)3/2(k − n)1/2
exp

(
n2/3φn

(
k

n4/3

))
,

S(2)
n =

∑
k : |k−α0n4/3|≤n19/18

k3/2

(k + n)3/2(k − n)1/2
exp

(
n2/3φn

(
k

n4/3

))
,

S(3)
n =

∑
k :α0n4/3+n19/18<k≤2n4/3

k3/2

(k + n)3/2(k − n)1/2
exp

(
n2/3φn

(
k

n4/3

))
,

S(4)
n =

∑
k : k>2n4/3

k3/2

(k + n)3/2(k − n)1/2
exp

(
n2/3φn

(
k

n4/3

))
.

Of these four sums, it is S
(2)
n that makes the asymptotically most significant contribution. Making use of

(5.20) and (5.21), we can estimate it for large n as

S(2)
n =

∑
|k−α0n4/3|≤n19/18

k3/2

(k + n)3/2(k − n)1/2
exp

[
n2/3

(
F

(
k

n4/3

)
− n10/3

6k3
+O

(
n−4/3

))]

=
(

1 +O
(
n−2/3

)) ∑
|k−α0n4/3|≤n19/18

k3/2

(k + n)3/2(k − n)1/2

× exp

[
n2/3F

(
k

n4/3

)
− 1

6
α−3

0

(
1 +O

(
n−5/18

))]
=
(

1 +O
(
n−5/18

))
e−2π/3

∑
|k−α0n4/3|≤n19/18

k3/2

(k + n)3/2(k − n)1/2
exp

(
n2/3F

(
k

n4/3

))

=
(

1 +O
(
n−5/18

))
e−2π/3

(
α0n

4/3
)−1/2

×
∑

|k−α0n4/3|≤n19/18

exp

(
−En2/3 − 3πn2/3

(
k

n4/3
− α0

)2

+O
(
n−1/6

))

=
(

1 +O
(
n−1/6

))
e−En

2/3−2π/3α
−1/2
0 n−2/3

∑
|k−α0n4/3|≤n19/18

exp

(
−3π

(
k − α0n

4/3

n

)2
)
.

The sum in this last expression can be regarded in the usual way as a Riemann sum for a Gaussian integral;
specifically, it is asymptotically equal to

(
1 +O

(
n−1

))
n

∫ n1/18

−n1/18

e−3πu2

du =
(
1 +O

(
n−1

))
n

(
1√
3
−O

(
e−n

1/9
))

=
(
1 +O

(
n−1

)) n√
3

as n→∞ (again making use of (2.39) to justify the first transition). Thus, we have obtained the relation

S(2)
n =

(
1 +O

(
n−1/6

)) α−1/2
0√

3
n1/3e−En

2/3−2π/3 (n→∞).
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Next, we bound the sum S
(1)
n to show that its contribution is negligible compared to that of S

(2)
n . The

polynomial-order factor appearing in front of the exponential term in the sum is bounded from above by 1.
Thus, by (5.19) and the fact that F (t) is increasing on (0, α0) we have that, as n→∞,

0 ≤ S(1)
n ≤

∑
2n≤k<α0n4/3−n19/18

exp

(
n2/3φn

(
k

n4/3

))

≤
∑

2n≤k<α0n4/3−n19/18

exp

(
n2/3F

(
k

n4/3

))
≤ α0n

4/3 exp
(
n2/3F

(
α0 − n−5/18

))
≤ α0n

4/3 exp
(
−En2/3 − 3πn1/9 +O

(
n−1/6

))
= O

(
e−En

2/3−n1/9
)
.

The third sum S
(3)
n can be bounded in a completely analogous fashion, resulting (the reader can easily check)

in the same bound

S(3)
n = O

(
e−En

2/3−n1/9
)
.

Finally, to bound S
(4)
n , we use the fact that F (t) ≤ −4

√
πt to write

0 ≤ S(4)
n ≤

∑
k>2n4/3

10

k1/2
exp

(
n2/3F

(
k

n4/3

))
≤

∑
k>2n4/3

10

k1/2
exp

(
−4
√
πk
)

≤ 10

∫ ∞
2n4/3

e−4
√
πx dx =

10

8π

(
4
√

2πn2/3 + 1
)

exp
(
−4
√

2πn2/3
)

= O
(
e−En

2/3−n1/9
)
.

Combining the above estimates for S
(1)
n , S

(2)
n , S

(3)
n and S

(4)
n , we have finally from (5.18) that

d2n =
(

1 +O
(
n−1/10

)) (
128
√
πn
)(α−1/2

0√
3
n1/3e−En

2/3−2π/3

)
as n→∞,

which, after a trivial reshuffling of the terms, is exactly (5.7). �

Second method for proving Theorem 5.3. We give most of the details of a second proof of Theo-
rem 5.3, except for the rate of convergence result, which we weaken to a less explicit 1 + o(1) multiplicative
error term. This seems of independent interest as it highlights yet another way of approaching the study
of the coefficients d2n. This proof requires some calculations that would be tedious to perform by hand,
but are easily done using a computer algebra system (we used Mathematica). We omit the details of these
calculations and a few other details needed to make the proof watertight, which may be filled in by an
enthusiastic reader.

We start by deriving a new representation of d2n suitable for asymptotic analysis. Start with the formula
(5.1) for d2n in a slightly modified form

d2n =
(3/2)2n

22n−5/2(2n)!

∫ ∞
1

ω(x)

(x+ 1)3/2

(
x− 1

x+ 1

)2n

2F1

(
n+

3

4
, n+

5

4
; 2n+ 2;

(
x− 1

x+ 1

)2
)
dx

in which the integration is performed on (1,∞) (this follows from (5.1) by the same symmetry under the
change of variables u = 1/x as in (3.2), a consequence of the functional equation (1.9)). Now use Euler’s
integral representation

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1 1

(1− zt)a
dt
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for the Gauss hypergeometric function (see [2, p. 65]) to represent the 2F1 term inside the integral. This
gives

d2n =
(3/2)2n

22n−5/2(2n)!

Γ(2n+ 2)

Γ(n+ 3/4)Γ(n+ 5/4)

×
∫ ∞

1

∫ 1

0

ω(x)

(x+ 1)3/2

(
x− 1

x+ 1

)2n

tn+1/4(1− t)n−1/4

(
1−

(
x− 1

x+ 1

)2

t

)−(n+3/4)

dt dx.

As the reader can check, the constant in front of the integral simplifies to

(2n+ 1)(3/2)2n

22n−5/2Γ(n+ 3/4)Γ(n+ 5/4)
=

16

π
(2n+ 1).

Thus, after some further trivial algebraic manipulations we arrive at the representation

d2n =
16

π
(2n+ 1)

∫ ∞
1

∫ 1

0

ω(x)

((x+ 1)2 − t(x− 1)2)3/4

(
t

1− t

)1/4(
t(1− t)(x− 1)2

(x+ 1)2 − t(x− 1)2

)n
dt dx.(5.22)

Recalling (2.7), we see that it makes sense to write

(5.23) d2n =
16

π
(2n+ 1)(Rn + µn),

where we define the quantities Rn, µn by

Rn =

∫ ∞
1

∫ 1

0

πx(2πx− 3)

((x+ 1)2 − t(x− 1)2)3/4

(
t

1− t

)1/4

e−πx
(

t(1− t)(x− 1)2

(x+ 1)2 − t(x− 1)2

)n
dt dx,(5.24)

µn =

∫ ∞
1

∫ 1

0

ω(x)− πx(2πx− 3)e−πx

((x+ 1)2 − t(x− 1)2)3/4

(
t

1− t

)1/4(
t(1− t)(x− 1)2

(x+ 1)2 − t(x− 1)2

)n
dt dx.(5.25)

It will be enough to obtain the asymptotic behavior of Rn as n → ∞, and separately to show that µn is
asymptotically negligible compared to Rn.

Part 1: deriving asymptotics for Rn. Define functions

g(t, x) =
πx(2πx− 3)

((x+ 1)2 − t(x− 1)2)3/4

(
t

1− t

)1/4

,

hn(t, x) =
n

π
log

(
t(1− t)(x− 1)2

(x+ 1)2 − t(x− 1)2

)
− x = M log

(
t(1− t)(x− 1)2

(x+ 1)2 − t(x− 1)2

)
− x,

where for convenience throughout the proof we denote M = n
π . Then Rn can be rewritten in the form

(5.26) Rn =

∫ ∞
1

∫ 1

0

g(t, x) exp (πhn(t, x)) dt dx.

This form is suitable for applying a two-dimensional version of Laplace’s method. The method consists
of identifying the global minimum point of hn(·, ·) and analyzing the second-order Taylor expansion of hn
around the minimum point. We will need the partial derivatives of hn(·, ·) up to second order, which after
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some calculation are found to be

∂hn
∂x

=
4M(x+ 1)− (x− 1)((x+ 1)2 − t(x− 1)2)

(x− 1)((x+ 1)2 − t(x− 1)2)
,(5.27)

∂hn
∂t

= −M · (2t− 1)(x+ 1)2 − t2(x− 1)2

t(1− t)((x+ 1)2 − t(x− 1)2
,(5.28)

∂2hn
∂t2

= −M t4(x−1)4+(x+1)4−4t3(x2−1)2−4t(x+1)2(x2+1)+2t2(x+1)2(3x2−2x+3)

t2(1−t)2((x+1)2−t(x−1)2)2
,(5.29)

∂2hn
∂x2

= −8M
x(x+ 1)2 − t(x3 − 3x+ 2)

(x− 1)2((x+ 1)2 − t(x− 1)2)
,(5.30)

∂2hn
∂t∂x

= 4M
x2 − 1

((x+ 1)2 − t(x− 1)2)2
.(5.31)

To find the minimum point, we solve the equations ∂hn
∂t = ∂hn

∂t = 0. By (5.27)–(5.28), this gives the system
of two equations

4M(x+ 1)− (x− 1)((x+ 1)2 − t(x− 1)2) = 0,(5.32)

(2t− 1)(x+ 1)2 − t2(x− 1)2 = 0.(5.33)

Solving (5.32) (a linear equation in t) for t gives the relation

(5.34) t =
(x+ 1)(x2 − 4M − 1)

(x− 1)3
.

Substituting this value back into (5.33) gives the equation

4(x+ 1)2

(x− 1)4
(x(x− 1)2 − 4M2) = 0.

That is, x has to satisfy the cubic equation

x(x− 1)2 − 4M2 = 0.

For M ≥ 1, one can check that the cubic has a single real solution, given by

(5.35) x =

((
54M2 − 1 + 6M

√
3(27M2 − 1)

)1/3

+ 1

)2

3
(

54M2 − 1 + 6M
√

3(27M2 − 1)
)1/3

.

The corresponding t value is given by (5.34), which, for x given by (5.35), can be brought to the slightly
simpler form

t =
1

2M3

[
(2M − 1)x2 + (−2M2 + 1)x+ 2M2(M − 2)

]
.

Summarizing the above remarks, define quantities

αn = 54M2 − 1 + 6M
√

3(27M2 − 1),(5.36)

ξn =
(α

1/3
n + 1)2

3α
1/3
n

,(5.37)

τn =
1

2M3

(
(2M − 1)ξ2

n + (−2M2 + 1)ξn + 2M2(M − 2)
)
.(5.38)

Then (τn, ξn) is the unique solution of the equations

∂hn
∂x

(τn, ξn) = 0,
∂hn
∂t

(τn, ξn) = 0.
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Using these formulas one can now also find the asymptotic behavior of ξn and τn as M →∞, which is given
by

τn = 1− 22/3M−1/3 + 24/3M−2/3 − 8

3
M−1 +O(M−4/3),

ξn = 22/3M2/3 +
2

3
+

1

9× 22/3
M−2/3 +O(M−4/3).

In particular, note that for large M (that is, for large n) we have ξn > 1, 0 < τn < 1. That is, the point
(ξn, τn) lies in the (interior of) the region of integration in the expression (5.26) for Rn.

Next, having found the values (τn, ξn), we want to understand the values hn(τn, ξn), ∂2hn
∂t2 (τn, ξn),

∂2hn
∂x2 (τn, ξn), ∂2hn

∂t∂x (τn, ξn). These are somewhat complicated numbers, but can be brought to simpler forms
by taking the relevant rational functions in τn, ξn, expressing them as rational functions of ξn only using
(5.34), and then performing polynomial reduction modulo the polynomial ξn(ξn − 1)2 − 4M2 (the cubic
polynomial of which ξn is a root). Using Mathematica to perform the reduction, we arrived at the following
simplified formulas:

τn(1− τn)(ξn − 1)2

(ξn + 1)2 − τn(ξn − 1)2

=
1

M3

[
(2M − 1)ξ2

n + (−2M2 + 1)ξn +M2(M − 4)
]

= 2τn − 1,

hn(τn, ξn) = M log

(
τn(1− τn)(ξn − 1)2

(ξn + 1)2 − τn(ξn − 1)2

)
− ξn = ξn −M log(2τn − 1)− ξn,

∂2hn
∂t2

(τn, ξn) = − 1

2(M2 + 1)

[
(M2 + 3)ξ2

n + 2(2M2 − 1)ξn + (8M3 − 9M2 + 8M − 1)
]
,

∂2hn
∂x2

(τn, ξn) = − 1

4M2(M2 + 1)

(
(2M2 + 3)ξ2

n − 3ξn − 4M(M2 +M + 1)
)
,

∂2hn
∂t∂x

(τn, ξn) =
1

4M(M2 + 1)

(
(M2 − 1)ξ2

n − 2(2M2 − 1)ξn + (7M2 − 1)
)
.

Finally, the Hessian

∆n :=
∂2hn
∂t2

(τn, ξn)
∂2hn
∂x2

(τn, ξn)−
(
∂2hn
∂t∂x

(τn, ξn)

)2

can be found to be expressible by the (still ungainly) formula

∆n =
(24M3−17M2+24M−1)ξ2n+2(6M4−16M3+31M2−16M+1)+(56M4+8M3−9M2+8M−1)

16M2(M2+1) .

From these expressions and (5.37), we derive some additional useful asymptotic expansions:

∂2hn
∂x2

(τn, ξn) = −21/3M−2/3 +O(M−1),(5.39)

∆n =
3

24/3
M2/3 +O(M−1/3),(5.40)

1√
∆n

=
22/3

√
3
M−1/3 − 24/3

√
3
M−2/3 +

10

3
√

3
M−1 +O(M−4/3),(5.41)

hn(τn, ξn) = −3× 22/3M2/3 − 2

3
− 1

15× 22/3
M−2/3 +O(M−4/3).(5.42)

One additional quantity we need to understand is

(5.43) g(τn, ξn) =
πξn(2πξn − 3)

((ξn + 1)2 − τn(ξn − 1)2)3/4

(
τn

1− τn

)1/4

.

This can be written as

g(τn, ξn) = πξn(2πξn − 3)X1/4
n Y 3/4

n
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where we define

Xn =
τn

1− τn
, Yn =

1

(ξn + 1)2 − τn(ξn − 1)2
.

Some more algebraic simplification then shows that

Xn =
1

4M
(ξ2
n − 1), Yn =

1

8M(M2 + 1)
(−ξ2

n + 3ξn + 2(M2 − 1)).

Using these relations, we then get the asymptotic expansion

g(τn, ξn) = 22/3π2M2/3 − 1

6
π(9− π) +O(M−2/3).

Now note that (5.39) and (5.40) imply that (for large n) the Hessian matrix of hn at (τn, ξn) is negative-
definite. Thus, (τn, ξn) is indeed a local maximum point of hn. We leave to the reader to check that it is in
fact a global maximum.

Now recall that the two-dimensional version of Laplace’s method gives the asymptotic formula

(1 + o(1))
2√
∆n

g(τn, ξn) exp (πhn(τn, ξn)) ,

for the integral on the right-hand side of (5.26). This arises by making a suitable change of variables in the
integral to center it around the point (ξn, τn) and introduce scaling that turns the integral to an approximate
Gaussian integral—see [92, Ch. VIII] for details; we omit the derivation of bounds needed to rigorously justify
the approximation. Substituting the asymptotic values found in (5.41)–(5.43) therefore gives that

Rn = (1 + o(1))2×
(

22/3

√
3
M−1/3

)
22/3π2M2/3 exp

(
−3× 22/3πM2/3 − 2π

3

)
(5.44)

= (1 + o(1))

(
2× 22/3

√
3
π1/3 × 22/3π2 1

π2/3
e−2π/3

)
n1/3 exp

(
−3× 22/3π1/3n2/3

)
= (1 + o(1))

(
4× 21/3

√
3

π5/3e−2π/3

)
n1/3 exp

(
−3(4π)1/3n2/3

)
.

Part 2: bounding µn. The next step is to prove that the contribution of µn is asymptotically negligible
relative to Rn. This relies as usual on (2.7). We sketch the argument but leave the details to the interested
reader to develop. Observe that by (2.7), µn satisfies a bound of the form

|µn| ≤ C
∫ ∞

1

∫ 1

0

g(t, x) exp (πhn(t, x)− 2πx) dt dx = C

∫ ∞
1

∫ 1

0

g(t, x) exp (πkn(t, x)) dt dx,

for some constant C > 0, where we denote kn(t, x) = hn(t, x) − 2x. But now kn(t, x) can be analyzed in
a similar fashion to our analysis of hn(t, x) above. In particular, it can be shown that for n large enough,
kn(t, x) has a unique global maximum point (tn, xn) ∈ (0, 1)× (1,∞), and that the maximum value

K∗n := kn(tn, xn)

behaves asymptotically as

K∗n = c0M
2/3 + o

(
M2/3

)
for some constant c0, where, significantly, c0 < −3× 22/3 (the leading constant in the analogous asymptotic
expression (5.42) for the maximum value of hn(t, x)). By deriving some auxiliary technical bounds for the
decay of hn(t, x) away from its maximum point and near the boundaries of the integration region, one can
then show that for any ε > 0, µn satisfies a bound of the form

|µn| = O
(

exp
(
π1/3(c0 + ε)n2/3

))
.

Taking ε < 3 × 22/3 − c0 then gives a rate of growth that is smaller than the exponential rate of growth of
Rn, establishing that µn � Rn.
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Putting everything together. Combining the above discussion regarding µn with (5.23) and (5.44),
we find that

d2n = (1 + o(1))

(
16

π
(2n+ 1)

)
×
(

4× 21/3

√
3

π5/3e−2π/3

)
n1/3 exp

(
−3(4π)1/3n2/3

)
,

= (1 + o(1))

(
128× 21/3

√
3

π2/3e−2π/3

)
n4/3 exp

(
−3(4π)1/3n2/3

)
,

which is the same (except for the weaker rate of convergence estimate) as (5.7).
�

5.4. Connection to the function ν̃(t) and the Chebyshev polynomials of the second kind

We now prove yet another formula for dn, tying it in a surprising way to the function ν̃(t) (discussed in
Section 4.9) and its expansion in yet another family of orthogonal polynomials, the Chebyshev polynomials
of the second kind. The properties of these very classical polynomials, denoted Un(t), are summarized in
Section A.1.

Proposition 5.9. The coefficients dn can be alternatively expressed as

(5.45) dn = (−1)n
4
√

2

π

∫ 1

−1

ν̃(t)Un(t)
√

1− t2 dt.

Proof. By the identity (4.25) expressing ν̃(t) as a power series with coefficients related to cn, we have
that ∫ 1

−1

ν̃(t)Un(t)
√

1− t2 dt =
1

2
√

2

∫ 1

−1

( ∞∑
m=0

(−1)m(3/2)m
m!

cmt
m

)
Un(t)

√
1− t2 dt(5.46)

=
1

2
√

2

∞∑
m=0

(−1)m(3/2)m
m!

cm

∫ 1

−1

tmUn(t)
√

1− t2 dt.

The integrals in this last expression can be interpreted as inner products in the space L2((−1, 1),
√

1− t2 dt)
of the monomial tm with the Chebyshev polynomial Un(t), so they can be evaluated by using the relation
(A.3) to expand the monomial tm in the polynomials Uj(t) and then using of the orthogonality relation
(A.4). Together these relations imply that∫ 1

−1

tmUn(t)
√

1− t2 dt =

{
π
2

1
(m+1)2m (n+ 1)

(
m+1
k

)
if n = m− 2k for some k ≥ 0,

0 otherwise.

Thus, we can rewrite the series in (5.46) as

1

2
√

2

∞∑
k=0

(−1)n+2k(3/2)n+2k

(n+ 2k)!
cn+2k ×

π

2

1

(n+ 2k + 1)2n+2k
(n+ 1)

(
n+ 2k + 1

k

)

=
(−1)nπ

4
√

2
· n+ 1

2n

∞∑
k=0

(3/2)n+2k

22kk!(n+ k + 1)!
cn+2k.

By (5.4) this gives precisely (−1)nπ

4
√

2
dn, so we are done. �

The last proposition leads naturally to another central result of this chapter, which, in a manner anal-
ogous to Theorem 4.7, gives a thought-provoking alternative point of view regarding the significance of the
coefficients d2n.

Theorem 5.10 (Expansion of ν̃(t) in the Chebyshev polynomials of the second kind). The function ν̃(t)
has the series expansion

(5.47) ν̃(t) =
1

2
√

2

∞∑
n=0

d2nU2n(t),
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The series in (5.47) converges pointwise for all t ∈ (−1, 1) and in the sense of the function space

L2((−1, 1),
√

1− t2 dt).

Proof. From the general theory of orthogonal polynomial expansions, the function ν̃(t), being a con-
tinuous and bounded function on (−1, 1), has an expansion of the form

ν̃(t) =

∞∑
n=0

σnUn(t)

in the polynomials Un(t). The expansion converges in L2((−1, 1),
√

1− t2 dt) and for all t ∈ (−1, 1), see [82,
Ch. IX]. Using the orthogonality relation (A.4), the coefficients σn can be extracted as L2 inner products,
namely

σn =
2

π

∫ 1

−1

ν̃(t)Un(t)
√

1− t2 dt,

and this is equal to (−1)n

2
√

2
dn by (5.45). �

5.5. Mellin transform representation for gn(x) and an alternative interpretation for the
gn-expansion

The next result gives a formula representing the polynomials gn(x) in terms of Mellin transforms involving
the Chebyshev polynomials of the second kind evaluated at x−1

x+1 . This representation, which we have not

found described explicitly in the literature but is a special case of a more general result [46, eq. (3.4)], stands
as an interesting parallel to the integral representation for fn(x) given in Proposition 4.13.

Proposition 5.11 (Mellin transform representation of gn). We have the relation∫ ∞
0

1

(x+ 1)3/2
Un

(
x− 1

x+ 1

)
xs−1 dx(5.48)

= in
2√
π

Γ(s)Γ

(
3

2
− s
)
gn

(
1

i

(
s− 3

4

)) (
0 < Re(s) <

3

2

)
,

or, equivalently,

(5.49)

∫ ∞
0

1

(x+ 1)3/2
Un

(
x− 1

x+ 1

)
x−

1
4 +it dx = in

2√
π

Γ

(
3

4
+ it

)
Γ

(
3

4
− it

)
gn(t).

Proof. We prove this in the equivalent form (5.49). Use the expansion (A.2) of Un(t) in monomials
and then the Mellin transform representation (4.20) for fn(t), to get that∫ ∞

0

1

(x+ 1)3/2
Un

(
x− 1

x+ 1

)
x−

1
4 +it dx

=

bn2 c∑
k=0

(−1)k
(
n− k
k

)
2n−2k

∫ ∞
0

1

(x+ 1)3/2

(
x− 1

x+ 1

)n−2k

x−
1
4 +it dx

=

bn2 c∑
k=0

(−1)k
(
n− k
k

)
2n−2kin−2k 2(n− 2k)!√

π(3/2)n−2k
Γ

(
3

4
+ it

)
Γ

(
3

4
− it

)
fn−2k

= inΓ

(
3

4
+ it

)
Γ

(
3

4
− it

)
2√
π

bn2 c∑
k=0

2n−2k(n− k)!

k!(3/2)n−2k
fn−2k(t).

By the relation (A.43) expressing gn(t) in terms of the fk’s, this is equal to the expression on the right-hand
side of (5.49). �
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Recall that in Section 4.7 we showed how the fn-expansion of the Riemann xi function can be thought

of as arising from the expansion of the radial function A(r) in the orthogonal basis (G
(3)
n (r))∞n=0, by taking

Mellin transforms. In a completely analogous manner, the above Mellin transform representation of gn(t)
makes a similar reinterpretation possible for the gn-expansion of Ξ(t) as originating in the expansion (5.47)
of ν̃(x) in the Chebyshev polynomials of the second kind. To see this, first recall the Mellin transform
representation (4.14), in which we make the substitution s = 3

2 + it to bring it to the form

(5.50)

∫ ∞
0

ν(x)x−
1
4 + it

2 dx =
2√
π

Γ

(
3

4
+
it

2

)
Γ

(
3

4
− it

2

)
Ξ(t).

Note however that ν(x) can be expressed in terms of ν̃(t) as

ν(x) =
2
√

2

(x+ 1)3/2
ν̃

(
1− x
1 + x

)
=

2
√

2

(x+ 1)3/2
ν̃

(
x− 1

x+ 1

)
by inverting the defining relation (4.21) for centered functions and using the fact that ν̃(t) is an even function.
This implies, using (5.47), that ν(x) has the series expansion

ν(x) =
1

(x+ 1)3/2

∞∑
n=0

d2nU2n

(
x− 1

x+ 1

)
.

We can now use this together with (5.49) to evaluate the Mellin transform on the left-hand side of (5.50) in
a different way as∫ ∞

0

ν(x)x−
1
4 + it

2 dx =

∫ ∞
0

1

(x+ 1)3/2

∞∑
n=0

d2nU2n

(
x− 1

x+ 1

)
x−

1
4 + it

2 dx

=

∞∑
n=0

d2n

∫ ∞
0

1

(x+ 1)3/2
U2n

(
x− 1

x+ 1

)
x−

1
4 + it

2 dx

=

∞∑
n=0

d2n(−1)n
2√
π

Γ

(
3

4
+
it

2

)
Γ

(
3

4
− it

2

)
gn

(
t

2

)
.

Equating this last expression to the right-hand side of (5.50) and canceling common terms recovers the
gn-expansion (5.5), as we predicted.



CHAPTER 6

Additional results

In the previous chapters we developed the main parts of the theory associated with the expansions of the
Riemann xi function in the Hermite, (fn)∞n=0 and (gn)∞n=0 polynomial families. In this chapter we include a
few additional results that continue to shed light on the themes we explored.

6.1. An asymptotic formula for the Taylor coefficients of Ξ(t)

The method we used in Chapter 2 to analyze the asymptotic behavior of the Hermite expansion coeffi-
cients b2n has the added benefit of enabling us to also prove an analogous asymptotic formula for the Taylor
coefficients a2n in the Taylor expansion (1.4) of the Riemann xi function. The reason for this is a pleasing
similarity between the formulas for a2n and b2n. It was noted by the authors of [19] and [22] (and probably
others before them) that the formula for a2n can be written in the form

(6.1) a2n =
2

(2n)!

∫ ∞
0

Φ(x)x2n dx =
1

(2n)!

∫ ∞
−∞

Φ(x)x2n dx,

as can be seen by performing the usual change of variables x = e2u in (1.5) (or by differentiating 2n times
under the integral sign in (1.11) and setting t = 0). The striking resemblence of this formula to (1.13) seems
however to have gone unremarked in the literature.

Theorem 6.1 (Asymptotic formula for the coefficients a2n). The coefficients a2n satisfy the asymptotic
formula

a2n =

(
1 +O

(
log log n

log n

))
π1/4

22n− 5
2 (2n)!

(
2n

log(2n)

)7/4

exp

[
2n

(
log

(
2n

π

)
−W

(
2n

π

)
− 1

W
(

2n
π

))](6.2)

as n→∞, where W (·) denotes as in Chapter 2 the Lambert W function.

Proof. The idea is to repeat the analysis in the proof of Theorem 2.7, but with the numbers Q2n and
r2n in (2.25)–(2.26) being replaced by

Q′n =

∫ ∞
0

x2ne
5x
2

(
e2x − 3

2π

)
exp

(
−πe2x

)
dx,(6.3)

r′n =

∫ ∞
0

x2ne
5x
2

∞∑
m=2

(
m4e2x − 3m2

2π

)
exp

(
−πm2e2x

)
dx,(6.4)

for which, by (1.8) and (6.1), we then have that

(6.5) a2n =
8π2

(2n)!
(Q′2n + r′2n).

Note that the only difference from the original definitions of Q2n and r2n is the absence of the factor e−x
2/4.

Thus, the analysis carries over essentially verbatim to our current case, except that we replace the function
f(x) in the reformulated equation (2.28) for Qn with

ϕ(x) = e
5x
2

(
e2x − 3

2π

)
,

62
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to get the analogous representation

(6.6) Q′n =
1

22n

∫ ∞
0

ϕ(x) exp (ψ2n(2x)) dx

for Q′n. The effect of this change on the subsequent formulas is that the factor γn in (2.31) then also gets
replaced by the simpler factor γ′n = ϕ(x2n/2) in the asymptotic formula

(6.7) Q′n =

(
1 +O

(
1

n1/5

)) √
π

22n
√

2βn
γ′ne

αn .

that is the analogue of (2.42)—the factors βn and αn (and, importantly, the maximum point value x2n from
which they are derived) remain the same.

Now, γ′n has the asymptotic behavior (the counterpart to (2.34))

(6.8) γ′n =
(
1 +O

(
e−x2n

))
exp

(
9

4
x2n

)
=

(
1 +O

(
log n

n

))(
2n

πx2n

)9/4

as n → ∞. With these facts in mind, it is now a simple matter to go through the calculations and various
bounds in the proof of Theorem 2.7 and verify that they remain valid in the current setting (including the
bound (2.45) with Q′n and r′n replacing Qn and rn, respectively), with the final result being that the relation
(2.43) is now replaced by

Q′n =

(
1 +O

(
log log n

log n

))
1

22n+ 1
2

(
2n

πx2n

)7/4

exp

[
2n

(
log(2n)− log π − x2n −

1

x2n

)]
.

Inserting this into (6.5) gives (6.2). �

It is interesting to compare our formula (6.2) to other asymptotic formulas for the coefficients a2n which
have appeared in the literature. At the time we completed the first version of this paper, the strongest result
of this type we were aware of was the one due to Coffey [19, Prop. 1]. Coffey’s formula is more explicit, since
it contains only elementary functions, but is less accurate, since (if expressed in our notation as a formula
for a2n rather than in Coffey’s logarithmic notation) it has a multiplicative error term of exp(O(1)) = Θ(1),

compared to our 1 +O
(

logn
n

)
.

After we finished the initial version of this paper, we learned of another recent asymptotic formula for
the coefficients a2n that was proved by Griffin, Ono, Rolen and Zagier in a 2018 paper [32, Th. 7] (see also
equations (1) and (13) in their paper). Griffin et al’s result is more accurate than our Theorem 6.2, as it
gives a full asymptotic expansion for a2n whereby the relative error term can be made smaller than o(n−K)
for any fixed K by truncating the expansion after sufficiently many terms. Their formula is expressed in
terms of an implicitly-defined quantity L(n) that solves the equation

n = L

(
πeL +

3

4

)
.

This equation (a slightly more exotic variant of our equation for x2n involving Lambert’s W -function) arises
out of an an application of Laplace’s method in a manner quite similar to our own analysis. It is interesting
to ask whether our approach can be similarly extended to obtain a full asymptotic expansion for a2n that is
expressed in terms of the (arguably simpler) quantities x2n = W

(
2n
π

)
.

6.2. The function ω̃(t)

In Section 4.8 we defined the centered version of a balanced function, and applied that concept to the
study of the function ν(x) and its centered version ν̃(t), which has turned out to be quite significant in the
developments of Chapters 4 and 5. We now consider the function ω̃(t), the centered version of ω(x), which
is not only a more fundamental object than ν̃(t) (in the sense that the latter is computed from the former),
but turns out to also be significant and interesting in several distinct (and seemingly unrelated) ways.

As an initial and rather trivial observation, we already noted in Proposition 4.15 that the coefficients cn
can be interpreted as moments of ω̃(t), except for a trivial scaling factor.
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The next observation, which is also trivial as it is essentially a restatement of the above result, is that
the Fourier transform of ω̃(t) can be interpreted as a generating function for the coefficient sequence cn
(that is different from ν̃(t), which in Theorem 4.25 we also interpreted as a generating function for the cn’s).
Namely, we have the relation

(6.9)

∫ 1

−1

ω̃(u)eitu du =
1

2

∞∑
n=0

incnt
n

n!
.

Next, we arrive at a somewhat more surprising fact, which is that ω̃(u) also arises in a different way
as a scaling limit of the Fourier spectrum of the Poisson flow associated with the fn-expansion. To make
this precise, recall that in Theorem 3.6 we derived a Mellin transform representation for the Poisson flow
XFr (t). We will consider a limit of this representation as r → 0, but scale the t variable by a factor of r
since, as the formula (3.22) shows, the Mellin spectrum without scaling gets compressed into the interval
[(1− r)/(1 + r), (1 + r)/(1− r)], which shrinks to a point as r → 0. We also rewrite the Mellin transform as
an ordinary “additive” Fourier transform, in other words expressing the rescaled Poisson flow as

XFr

(
t

r

)
=

∫ ∞
−∞

Ψr(v)eivt dv.

This representation is obtained from (3.21) by a standard exponential change of variables (x = e2rv in the
particular scaling we use), and it is straightforward to check that Ψr(v) is given by

Ψr(v) = 2rerv/2ωr
(
e2rv

)
=

2r 1+η√
1−η

1√
1−ηe2rv

erv/2ω
(
e2rv−η
1−ηe2rv

)
if |v| < 1

2r log
(

1
η

)
,

0 otherwise

(refer to (3.22) for the second equality, and recall the notation (3.23)).

Proposition 6.2 (The centered function ω̃(u) as a scaling limit of the Poisson flow frequency spectrum).
We have the pointwise limits

lim
r→0+

Ψr(v) =

{
2ω̃(v) if |v| < 1,

0 otherwise.

Proof. This is a somewhat mundane verification involving Taylor series approximations. Specifically,
one finds that, as r → 0,

1

2r
log

(
1 + r

1− r

)
= 1 +O(r2),

2r
1 + η√
1− η

1√
1− ηe2rv

erv/2 =
2√

1− v
+O(r2),

e2rv − η
1− ηe2rv

=
1 + v

1− v
+O(r2).

The first of these three limits substantiates the claim that the Fourier spectrum Ψr(v) is supported in the
limit on the interval (−1, 1); the second and third limits show that for v ∈ (−1, 1) we have

lim
r→0+

Ψr(v) =
2√

1− v
ω

(
1 + r

1− r

)
= 2ω̃(−v) = 2ω̃(v)

(since ω̃(v) is an even function), as claimed. �

Our final result on ω̃(u) will show that not just its Fourier transform, but also ω̃(u) itself, is a generating
function for an interesting sequence, which can be given explicitly in terms of a recently studied sequence of
integers. For this, we first recall our recent results [77] on the Taylor expansion of the Jacobi theta series
θ(x) (defined in (1.6)) and its centered version, which as usual is related to θ(x) by

(6.10) θ̃(u) =
1√

1 + u
θ

(
1− u
1 + u

)
(|u| < 1).
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In [77] (where θ(x) was denoted θ3(x) and θ̃(u) was denoted σ3(u)) we proved that θ̃(u) has the Taylor
expansion

(6.11) θ̃(u) = W

∞∑
n=0

δ(n)

(2n)!
Φnu2n (|u| < 1),

where W and Φ are two special constants, given by

W = θ(1) =
Γ
(

1
4

)
√

2π3/4
, Ω =

Γ
(

1
4

)8
128π4

,

respectively, and where the sequence (δ(n))∞n=0 = 1, 1,−1, 51, 849,−26199, 1341999, . . . (denoted as d(n) in
[77]—for the current discussion we changed the notation in order to avoid a potential confusion with the
coefficient sequence dn in the expansion (5.5)) is a sequence of integers first introduced and studied in [77]
(see also [35]).

With this preparation, we can formulate a result identifying the coefficients in the Taylor expansion of
ω̃(u).

Theorem 6.3 (Taylor expansion of ω̃(u)). The Taylor expansion of ω̃(u) is given by

ω̃(u) = W

∞∑
n=0

ρ(n)

(2n)!
Ωnu2n (|u| < 1),

where ρ(n) are numbers defined in terms of the sequence (δ(n))∞n=0 as

ρ(n) =
1

16

(
4Ωδ(n+ 1)− (32n2 + 8n+ 3)δ(n) + (2n− 1)(2n)(4n− 1)(4n− 3)Ω−1δ(n− 1)

)
.

Proof. The idea is to first of all find a way to express ω̃(u) in terms of θ̃(u), and then use (6.11). Start
with the relation

θ(x) =

√
2√

1 + x
θ̃

(
1− x
1 + x

)
that is inverse to (6.10). Differentiating twice, we get

θ′(x) = −1

2

√
2

1

(1 + x)3/2
θ̃

(
1− x
1 + x

)
+
−2
√

2

(1 + x)5/2
θ̃′
(

1− x
1 + x

)
,

θ′′(x) =
√

2

(
3

4(1 + x)5/2
θ̃

(
1− x
1 + x

)
+

6

(1 + x)7/2
θ̃′
(

1− x
1 + x

)
+

4

(1 + x)9/2
θ̃′′
(

1− x
1 + x

))
.

It then follows that

ω̃(u) =
1√

1 + u
ω

(
1− u
1 + u

)
=

1

2
√

1 + u

(
2

(
1− u
1 + u

)2

θ′′
(

1− u
1 + u

)
+ 3

(
1− u
1 + u

)
θ′
(

1− u
1 + u

))

=
1√

1 + u

[
√

2

(
1− u
1 + u

)2
(

3

4

(1 + u)5/2

25/2
θ̃(u) +

6(1 + u)7/2

27/2
θ̃′(u) +

4(1 + u)9/2

29/2
θ̃′′(u)

)

+
3
√

2

2

(
1− u
1 + u

)(
− 1

2

(1 + u)3/2

23/2
θ̃(u)− 2

(1 + u)5/2

25/2
θ̃′(u)

)]
.

From here, a trivial algebraic simplification, which we omit, leads to the identity

(6.12) ω̃(u) =
1

16

[
3(u2 − 1)θ̃(u) + 12u(u2 − 1)θ̃′(u) + 4(u2 − 1)2θ̃′′(u)

]
.

But now observe that from (6.11) we have

θ̃′(u) = W

∞∑
n=1

δ(n)

(2n− 1)!
Ωnu2n−1, θ̃′′(u) = W

∞∑
n=2

δ(n)

(2n− 2)!
Ωnu2n−2.

Inserting (6.11) and these last two expansions into (6.12) and simplifying gives the claim. �



CHAPTER 7

Final remarks

This work has seen the introduction of a curious menagerie of previously unnoticed (or, at the very least,
under-appreciated) special functions that are tied in an interesting way to the theory of the Riemann zeta

function. This collection includes the orthogonal polynomial families Un, Hn, L
1/2
n , fn, and gn; the elementary

(though esoteric) radial functions A(r), B(r); the well-known functions θ(x) and ω(x), originating in the
world of modular forms and theta series; and the function ν(x) and its centered version ν̃(t), which do not
seem to have been previously studied.

These functions and their many subtle interconnections add a new set of tools to the arsenal of methods
available to attack central open problems in the theory of the zeta function, the Riemann hypothesis foremost
among them. Most significantly, one is left with the impression that the theory of orthogonal polynomials
may have a more central role to play in the study of the zeta function, and perhaps a greater potential to
lead to new insights, than had been previously suspected.

We conclude with a few open problems and suggestions for future research.

(1) There has been much discussion in the literature of sufficient conditions guaranteeing that a poly-
nomial p(z) has only real zeros based on knowledge of its coefficients in the expansion p(z) =∑n
k=0 αkφk(z), where (φk)∞k=0 is some given family of orthogonal polynomials. We note Turán’s

many results in [87, 88, 89], particularly his observation (Lem. II in [89], a result he discovered
independently but attributes to an earlier paper by Pólya [66]) that if the zeros of

∑n
k=0 akz

k are
all real then that is also the case for the corresponding Hermite expansion

∑n
k=0 akHk(z); and the

many analogous theorems of Iserles and Saff [40], among them the result (a special case of Prop. 6
in their paper) that if the zeros of the polynomial

∑n
k=0 akz

k are all real then that is also the case

for the polynomial
∑n
k=0

k!
(3/2)k

akfk(z). See also [9, 13, 37, 38, 39, 63] and the survey [79] for

further developments along these lines.
One question that now arises naturally is: to what extent do these developments inform the

attempts to prove the reality of the zeros of the Riemann xi function, in view of our new results?
(2) One rather striking fact is that the four different series expansions we have considered for the

Riemann xi function, namely

Ξ(t) =

∞∑
n=0

(−1)na2nt
2n, Ξ(t) =

∞∑
n=0

(−1)nc2nf2n(t),

Ξ(t) =

∞∑
n=0

(−1)nb2nH2n(t), Ξ(t) =

∞∑
n=0

(−1)nd2ng2n(t),

exhibit remarkably similar structural similarities: namely, in all four expansions the coefficients
appear with alternating signs (and their asymptotics can be understood to a good level of accuracy,
as our analysis shows).

It is intriguing to wonder about the significance of this structural property of Ξ(t). Can this
information be exploited somehow to derive information about the location of the zeros of Ξ(t)?

By way of comparison, one can consider “toy” expansions of the above forms involving more
elementary coefficient sequences. For example, we have the trivial expansions (the latter two of

66
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which being easy consequences of (A.13) and (A.29), respectively)
∞∑
n=0

(−1)n
α2n

(2n)!
t2n = cos(αt) (α > 0),

∞∑
n=0

(−1)n
α2n

(2n)!
H2n(t) = eα

2

cos(2αt) (α > 0),

∞∑
n=0

(−1)nα2nf2n(t) =
2

(1− α2)3/4
cos

(
t log

(
1 + α

1− α

))
(0 < α < 1),

which are entire functions of t that—needless to say—all have only real zeros. On the other hand,
we do not know for which values of α ∈ (0, 1) the expansion (whose explicit form is evaluated using
(A.40))

∞∑
n=0

(−1)nα2ng2n(t) =
1

(1− α)2 2F1

(
1,

3

4
− it; 3

2
;
−4α

(1− α)2

)
+

1

(1 + α)2 2F1

(
1,

3

4
− it; 3

2
;

4α

(1 + α)2

)
has only real zeros.

(3) The notion of Poisson flows we introduced seems worth exploring further. The Poisson flow associ-
ated with the polynomial family (fn)∞n=0 has interesting properties, and while it does not preserve
hyperbolicity in the sense of “continuous time” as we discussed in Section 3.5, it seems not incon-
ceivable that a weaker form of preservation of reality of the zeros for discrete time parameter values
might still hold. For example, does there exist a constant 0 < r0 < 1 such that if the polynomial∑n
k=0 akr

k
0fk(t) has only real zeros then the same is guaranteed to be true for the polynomial∑n

k=0 akfk(t)? It appears like it may be possible to approach this question using the biorthogonal-
ity techniques developed in the papers by Iserles and coauthors [37, 38, 39, 40]. And what can
be said about the Poisson flow associated with the orthogonal polynomial family (gn)∞n=0?

(4) Does the function in (6.9), the Fourier transform of ω̃(u) (which as we have seen can be thought of
as a scaling limit of the Poisson flow), have only real zeros? Is this question related to the Riemann
hypothesis?



APPENDIX A

Orthogonal polynomials

In this appendix we summarize some background facts we will need on several families of orthogonal
polynomials, and prove a few additional auxiliary results. We assume the reader is familiar with the basic
theory of orthogonal polynomials, as described, e.g., in Chapter 2–3 of Szegő’s classical book [82].

A.1. Chebyshev polynomials of the second kind

The Chebyshev polynomials, denoted Un(x), are a sequence of orthogonal polynomials with respect to

the weight function
√

1− x2 on (−1, 1), and are one of the most classical families of orthogonal polynomials.
A few of their main properties are given below; see [45, pp. 225–229] for more details.

(1) Definition:

Un(x) =
sin((n+ 1) arccos(x))

sin(arccos(x))
(A.1)

=

bn/2c∑
k=0

(−1)k
(
n− k
k

)
(2x)n−2k(A.2)

(2) Inverse relationship with monomial basis:

(A.3) xn =
1

(n+ 1)2n

bn/2c∑
k=0

(n− 2k + 1)

(
n+ 1

k

)
Un−2k(x).

(3) Orthogonality relation:

(A.4)

∫ 1

0

Um(x)Un(x)
√

1− x2 dx =
π

2
δm,n

(4) Recurrence relation:

(A.5) Un+1(x)− 2xUn(x) + Un−1(x) = 0

(5) Differential equation:

(A.6) (1− x2)U ′′n (x)− 3xU ′n(x) + n(n+ 2)Un(x) = 0

(6) Generating function:

(A.7)

∞∑
n=0

Un(x)zn =
1

1− 2xz + z2

(7) Poisson kernel:

(A.8)
2

π

∞∑
n=0

Un(x)Un(y)zn =
2

π
· 1− z2

1− 4xyz(z2 + 1) + 2(2x2 + 2y2 − 1)z2 + z4

(8) Symmetry: Un(−x) = (−1)nUn(x).
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Notes. To derive (A.3), take derivatives of both sides of the relation (found in [52, p. 22]) cosn+1 θ =∑bn/2c
k=0

(
n
k

)
cos(n− 2k)θ− 1

2χ{n even}
(
n
n/2

)
, and use (A.1). Formula (A.8) is derived in [53], where it appears

as equation (15), except that the formula there contains a typo (the term −4axy in the denominator needs
to be changed to −2axy), which we corrected.

A.2. Hermite polynomials

The Hermite polynomials are the well-known sequence Hn(x) of polynomials that are orthogonal with

respect to the Gaussian weight function e−x
2

on R. A few of their main properties are given below; see [2,
Sec. 6.1] for proofs.

(1) Definition:

(A.9) Hn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)

(2) Orthogonality relation:

(A.10)

∫ ∞
−∞

Hm(x)Hn(x)e−x
2

dx = 2nn!
√
πδm,n

(3) Recurrence relation:

(A.11) Hn+1(x)− 2xHn(x) + 2nHn−1(x) = 0

(4) Differential equation:

(A.12) H ′′n(x)− 2xH ′n(x) + 2nHn(x) = 0

(5) Generating function:

(A.13)

∞∑
n=0

Hn(x)

n!
zn = exp(2xz − z2)

(6) Poisson kernel:

(A.14)
1√
π

∞∑
n=0

Hn(x)Hn(y)

2nn!
zn =

1
√
π
√

1− z2
exp

(
2xyz − (x2 + y2)z2

1− z2

)
(7) Symmetry: Hn(−x) = (−1)nHn(x).

A.3. Laguerre polynomials

The (generalized) Laguerre polynomials form a sequence Lαn(x) of polynomials, dependent on a parameter
α > −1, that are orthogonal with respect to the weight function e−xxα on (0,∞). Of particular interest
to us will be the case α = 1/2; in this case the polynomials are essentially rescalings of the odd-indexed
Hermite polynomials. For convenience, we summarize below a few of the main formulas associated with the
polymomials Lαn(x); proofs can be found in [2, Sec 6.2].

(1) Definition:

(A.15) Lαn(x) =

n∑
k=0

(−1)k

k!

(
n+ α

n− k

)
xk.

(2) Orthogonality relation:

(A.16)

∫ ∞
−∞

Lm(x)Ln(x)e−xxα dx =
Γ(n+ α+ 1)

n!
δm,n

(3) Recurrence relation:

(A.17) (n+ 1)Lαn+1(x) + (x− 2n− α− 1)Lαn(x) + (n+ α)Lαn−1(x) = 0
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(4) Differential equation:

(A.18) x(Lαn)′′(x) + (α+ 1− x)(Lαn)′(x) + nLαn(x) = 0

(5) Generating function:

(A.19)

∞∑
n=0

Lαn(x)zn =
1

(1− z)α+1
exp

(
− xz

1− z

)
(6) Poisson kernel:

(A.20)

∞∑
n=0

n!

Γ(n+ α+ 1)
Lαn(x)Lαn(y)zn =

1

1− z
exp

(
−z(x+ y)

1− z

)
(xyz)−α/2Iα

(
2
√
xyz

1− z

)
,

where Iα(·) denotes the modified Bessel function of the first kind.

A.4. The symmetric Meixner-Pollaczek polynomials fn(x) = P
(3/4)
n (x;π/2)

The Meixner-Pollaczek polynomials are a two-parameter family of orthogonal polynomial sequences

P
(λ)
n (x;φ). The parameters satisfy λ > 0, 0 ≤ φ < π. In the special case φ = π/2, the polynomials are

sometimes referred to as the symmetric Meixner-Pollaczek polynomials (see [3]). In this paper we
make use of the special case λ = 3/4 of the symmetric case, namely the polynomials, which we denote fn(x)
for simplicity, given by

(A.21) fn(x) = P (3/4)
n (x;π/2).

The key property of the polynomials fn(x) is that they are an orthonormal family for the weight function∣∣Γ ( 3
4 + ix

)∣∣2, x ∈ R. Additional properties we will need are given in the list below. Bibliographic notes
and a few more details regarding proofs are given at the end of this section. See also Section A.6 where we
prove additional results relating the polynomial family fn to another family gn of orthogonal polynomials,
discussed in Section A.5.

(1) Definition and explicit formulas:

fn(x) =
(3/2)n
n!

in2F1

(
−n, 3

4
+ ix;

3

2
; 2

)
(A.22)

= (−i)n
n∑
k=0

2k
(
n+ 1

2

n− k

)(
− 3

4 + ix

k

)
(A.23)

= in
n∑
k=0

(−1)k2k
(
n+ 1

2

n− k

)(
− 1

4 + ix+ k

k

)
(A.24)

= in
n∑
k=0

(−1)k
(
− 3

4 + ix

k

)(
− 3

4 − ix
n− k

)
.(A.25)

(2) Orthogonality relation:

(A.26)

∫ ∞
−∞

fm(x)fn(x)

∣∣∣∣Γ(3

4
+ ix

)∣∣∣∣2 dx =
π3/2(3/2)n

2
√

2n!
δm,n.

(3) Recurrence relation:

(A.27) (n+ 1)fn+1(x)− 2xfn(x) +

(
n+

1

2

)
fn−1(x) = 0.

(4) Difference equation:

(A.28) 2

(
n+

3

4

)
fn(x)−

(
3

4
− ix

)
fn(x+ i)−

(
3

4
+ ix

)
fn(x− i) = 0.
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Table 1. The first few polynomials fn(x)

n fn(x)
0 1

1 2x

2 2x2 − 3
4

3 4
3x

3 − 13
6 x

4 2
3x

4 − 17
6 x

2 + 21
32

5 4
15x

5 − 7
3x

3 + 177
80 x

6 4
45x

6 − 25
18x

4 + 2401
720 x

2 − 77
128

7 8
315x

7 − 29
45x

5 + 1123
360 x

3 − 4987
2240x

8 2
315x

8 − 11
45x

6 + 1499
720 x

4 − 24749
6720 x

2 + 1155
2048

(5) Generating function:

(A.29)

∞∑
n=0

fn(x)zn = (1− iz)− 3
4 +ix(1 + iz)−

3
4−ix =

1

(1 + z2)
3
4

(
1− iz
1 + iz

)ix
.

(6) Poisson kernel:

2
√

2

π3/2

∞∑
n=0

n!

(3/2)n
fn(x)fn(y)zn =

2
√

2

π3/2

1

(1− z)3/2

(
1 + z

1− z

)i(x+y)

2F1

(
3

4
+ ix,

3

4
+ iy;

3

2
;
−4z

(1− z)2

)
(A.30)

(7) Mellin transform representations:

fn(x) = (−i)n
√
π(3/2)n

2n!

(
Γ

(
3

4
− ix

)
Γ

(
3

4
+ ix

))−1 ∫ ∞
0

1

(u+ 1)3/2

(
u− 1

u+ 1

)n
u−

1
4 +ix du(A.31)

= 2inπ
3
4 +ixΓ

(
3

4
+ ix

)−1 ∫ ∞
0

e−πr
2

L1/2
n (2πr2)r

1
2 +2ix dr(A.32)

(8) Symmetry: fn(−x) = (−1)nfn(x).

Notes. The above list is based on the general list of properties of the Meixner-Pollaczek polynomials

P
(λ)
n (x;φ) provided in [45, pp. 213–216], except for (A.30), which is a special case of [41, Eq. (2.25)], and

the Mellin transform representations (A.31)–(A.32), which are proved in our Propositions 4.12 and 4.13.
In the formulas (A.22)–(A.25), the first formula is the definition as given in [45]; formula (A.24) is an

explicit rewriting of (A.22) as a sum, and formula (A.23) follows from (A.24) by applying the symmetry
property fn(−x) = (−1)nfn(x) (which in turn is an easy consequence of either the recurrence relation (A.27)
or the generating function (A.29)). Formula (A.25) appears to be new, and follows by evaluating the sequence
of coefficients of zn in the generating function (A.29) as a convolution of the coefficient sequences for the
functions (1 − iz)−3/4+ix and (1 + iz)−3/4−ix. Note that (A.25) has the benefit of making the odd/even
symmetry of fn(x) readily apparent, which the other explicit formulas do not.

A.5. The continuous Hahn polynomials gn(x) = pn
(
x; 3

4 ,
3
4 ,

3
4 ,

3
4

)
The continuous Hahn polynomials are a four-parameter family pn(x; a, b, c, d) of orthogonal poly-

nomial sequences. They were introduced in increasing degrees of generality by Askey and Wilson [5] and
later Atakishiyev and Suslov [6] as continuous-weight analogues of the Hahn polynomials; earlier special
cases appeared in the work of Bateman [8] and later Pasternack [59] (see also [46] for a chronology of these
discoveries and related discussion).
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For our purposes, a special role will be played by the special case a = b = c = d = 3/4 of the continuous
Hahn polynomials, that is, the polynomial sequence

(A.33) gn(x) = pn

(
x;

3

4
,

3

4
,

3

4
,

3

4

)
.

A few of the main properties of these polynomials we will need are listed below. The notes at the end of the
section provide references and additional details.

(1) Definition and explicit formulas:

gn(x) = in(n+ 1) 3F2

(
−n, n+ 2,

3

4
+ ix;

3

2
,

3

2
; 1

)
(A.34)

= (−i)n
n∑
k=0

(n+ k + 1)!

(n− k)!(3/2)2
k

(
− 3

4 + ix

k

)
(A.35)

= in
n∑
k=0

(−1)k
(n+ 1)!

(3/2)k(3/2)n−k

(
− 3

4 + ix

k

)(
− 3

4 − ix
n− k

)
.(A.36)

(2) Orthogonality relation:

(A.37)

∫ ∞
−∞

gm(x)gn(x)

∣∣∣∣Γ(3

4
+ ix)

)∣∣∣∣4 dx =
π3

16
δm,n.

(3) Recurrence relation:

(A.38) (2n+ 3)gn+1(x)− 8xgn(x) + (2n+ 1)gn−1(x) = 0.

(4) Difference equation:

(A.39)

(
(n+ 1)2 − 2x2 +

1

8

)
gn(x)−

(
3

4
− ix

)2

gn(x+ i)−
(

3

4
+ ix

)2

gn(x− i) = 0.

(5) Generating functions:

∞∑
n=0

gn(x)zn =
1

(1 + iz)2 2F1

(
1,

3

4
− ix;

3

2
;

4iz

(1 + iz)2

)
(A.40)

∞∑
n=0

gn(x)

(n+ 1)!
zn = 1F1

(
3

4
+ ix;

3

2
;−iz

)
1F1

(
3

4
− ix;

3

2
; iz

)
(A.41)

(6) Symmetry: gn(−x) = (−1)ngn(x).
(7) Mellin transform representation:

gn(x) = (−i)n
√
π

2

(
Γ

(
3

4
− ix

)
Γ

(
3

4
+ ix

))−1 ∫ ∞
0

1

(u+ 1)3/2
Un

(
u− 1

u+ 1

)
du(A.42)

Notes. This list is based on the list of properties of the continuous Hahn polynomials pn(x; a, b, c, d) given
in [45, pp. 200–204], except for the Mellin transform representation, which is proved in our Proposition 5.11.

In the formulas (A.34)–(A.36), the first formula is the definition as given in [45], and formula (A.35) is the
explicit rewriting of (A.34) as a sum. Formula (A.36), which (like (A.25) discussed in the previous section)
has the benefit of highlighting the odd/even symmetry of gn(x), seems new, and is proved by evaluating the
coefficient of zn in (A.41) as

gn(x)

(n+ 1)!
=

n∑
k=0

[zk]
(

1F1

(
3

4
+ ix;

3

2
;−iz

))
× [zn−k]

(
1F1

(
3

4
− ix;

3

2
; iz

))
and simplifying.
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Table 2. The first few polynomials gn(x)

n gn(x)

0 1

1 8
3x

2 64
15x

2 − 3
5

3 512
105x

3 − 272
105x

4 4096
945 x

4 − 5312
945 x

2 + 7
15

5 32768
10395x

5 − 83968
10395x

3 + 568
231x

6 262144
135135x

6 − 77824
9009 x

4 + 847232
135135x

2 − 77
195

7 2097152
2027025x

7 − 14876672
2027025 x

5 + 20968448
2027025 x

3 − 527392
225225x

8 16777216
34459425x

8 − 25427968
4922775 x

6 + 33107968
2650725 x

4 − 25399936
3828825 x

2 + 77
221

A.6. The relationship between the polynomial sequences fn and gn

The goal of this section is to prove the following pair of identities, which seem new, relating the two
orthogonal polynomial families (fn)∞n=0 and (gn)∞n=0

Proposition A.1. The polynomial families fn(x) and gn(x) are related by the equations

gn(x) =

bn/2c∑
k=0

2n−2k(n− k)!

(3/2)n−2kk!
fn−2k(x),(A.43)

fn(x) =
(3/2)n

2n(n+ 1)!

bn/2c∑
k=0

(−1)k(n− 2k + 1)

(
n+ 1

k

)
gn−2k(x).(A.44)

The proofs relies on two binomial summation identities, given in the next two lemmas.

Lemma A.2. For integers p, q ≥ 0 we have the summation identity

(A.45)

bp/2c∑
k=0

(−1)k(p+ q − k)!

22kk!(p− 2k)!
=

1

2p
q!

(
p+ 2q + 1

p

)
.

Proof. Consider, for fixed q ≥ 0, the generating function in an indeterminate x of the sequence of
numbers (indexed by the parameter p ≥ 0) on the left-hand side of (A.45). This generating function can be
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evaluated as

∑
p≥0

bp/2c∑
k=0

(−1)k(p+ q − k)!

22kk!(p− 2k)!

xp

=
∑
p≥0

(∑
k

(
−1

4

)k (
p− k
k

)
(p− k + 1) · · · (p− k + q)

)
xp

=
∑
m≥0

∑
k

(
−1

4

)k (
m

k

)
(m+ 1) · · · (m+ q)xm+k =

∑
m≥0

(m+ 1) · · · (m+ q)xm

(∑
k

(
m

k

)(
−x

4

)k)

=
∑
m≥0

(m+ 1) · · · (m+ q)

(
x
(

1− x

4

))m
=

dq

dyq
∣∣
y=x(1−x/4)

( ∞∑
m=0

ym

)

=
dq

dyq
∣∣
y=x(1−x/4)

(
1

1− y

)
=

q!

(1− y)q+1
∣∣
y=x(1−x/4)

=
q!(

1− x
(
1− x

4

))q+1 =
q!(

1− x
2

)2q+2 =

∞∑
p=0

q!

2p

(
p+ 2q + 1

p

)
xp,

which is the generating function for the sequence on the right-hand side of (A.45). �

Lemma A.3. The summation identity

(A.46)

N∑
k=0

(N − 2k)

(
N

k

)(
N +m− 2k

2m+ 1

)
= N

(
N − 1

m

)
2N−m

holds for integers N,m ≥ 0

Proof. Denote

Fm(N, k) =
(N − 2k)

(
N
k

)(
N+m−2k

2m+1

)
N
(
N−1
m

)
2N−m

,

so that the identity to prove becomes the statement that
∑N
k=0 Fm(N, k) = 1. This claim in turn follows by

applying the method of Wilf-Zeilberger pairs [62, Ch. 7], [91] to the rational certificate function (in which
m is regarded as a parameter)

Rm(N, k) =
k(m+N + 1− 2k)(m+N + 2− 2k)

2(N − 2k)(N + 1− k)(N −m− 2k)
.

The certificate was found using the Mathematica package fastZeil [60, 61], a software implementation of
Zeilberger’s algorithm. �

Proof of (A.43). An immediate consequence of (A.45) is the identity

(A.47)

b(n−m)/2c∑
k=0

(−1)k(n− k)!

22kk!(3/2)n−2k

(
n− 2k + 1

2

n− 2k −m

)
=

(n+m+ 1)!

2n+m(n−m)!(3/2)2
m

,

which holds for integers n ≥ m ≥ 0—indeed, this relation reduces to (A.45) after a short simplification on

taking p = n−m, q = m and using the facts that (3/2)m = (2m+2)!
22m+1(m+1)! and

(
n−2k+1/2
n−2k−m

)
= (3/2)n−2k

(n−2k−m)!(3/2)m
.

Now (A.47) is the key to proving (A.43): making use of the explicit formulas (A.23) and (A.35) for fn(x)
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and gn(x), respectively, we write

bn/2c∑
k=0

2n−2k(n− k)!

(3/2)n−2kk!
fn−2k(x) =

bn/2c∑
k=0

2n−2k(n− k)!

(3/2)n−2kk!

(
(−i)n−2k

n−2k∑
m=0

2m
(
n− 2k + 1

2

n− 2k −m

)(
− 3

4 + ix

m

))

= (−i)n
n∑

m=0

2m
b(n−m)/2c∑

k=0

(−1)k2n−2k(n− k)!

(3/2)n−2kk!

(
n− 2k + 1

2

n− 2k −m

)(− 3
4 + ix

m

)

= (−i)n
n∑

m=0

(n+m+ 1)!

(n−m)!(3/2)2
m

(
− 3

4 + ix

m

)
= gn(x),

giving the result. �

Proof of (A.44). Using (A.46), we can deduce the slightly more messy identity

(A.48)
(3/2)n

2n(3/2)2
m

b(n−m)/2c∑
k=0

(n− 2k + 1)(n− 2k +m+ 1)!

k!(n− k + 1)!(n− 2k −m)!
= 2m

(
n+ 1/2

n−m

)
(n ≥ m ≥ 0).

The way to see this is to first massage the left-hand side of (A.46) a bit by rewriting it as

N∑
k=0

(N − 2k)

(
N

k

)(
N +m− 2k

2m+ 1

)
= 2

bN/2c∑
k=0

(N − 2k)

(
N

k

)(
N +m− 2k

2m+ 1

)

= 2

bN−m2 c∑
k=0

(N − 2k)

(
N

k

)(
N +m− 2k

2m+ 1

)
,

where the first equality follows from the symmetry of the summand under the relabeling k 7→ N − k,
and the second equality follows on noticing that the summands actually vanish for values of k for which
N−m

2 < k < N+m
2 . Thus, we obtain another variant of (A.46), namely

(A.49)

bN−m2 c∑
k=0

(N − 2k)

(
N

k

)(
N +m− 2k

2m+ 1

)
= N

(
N − 1

m

)
2N−m+1.

We leave to the reader to verify (using similar simple substitutions as in the proof of (A.43) above) that
setting N = n+ 1 in this new identity gives a relation that is equivalent to (A.48).

Finally, from (A.48) we can prove the relation (A.44) in a manner analogous to the proof of (A.43),
again making use of the expansions (A.23), (A.35) but working in the opposite direction. We have

(3/2)n
2n(n+ 1)!

bn/2c∑
k=0

(−1)k(n− 2k + 1)

(
n+ 1

k

)
gn−2k(x)

=
(3/2)n

2n(n+ 1)!

bn/2c∑
k=0

(−1)k(n− 2k + 1)

(
n+ 1

k

)
(−i)n−2k

(
n−2k∑
m=0

(n− 2k +m+ 1)!

(n− 2k −m)!(3/2)2
m

(
− 3

4 + ix

m

))

= (−i)n
n∑

m=0

 (3/2)n
2n

b(n−m)/2c∑
k=0

(n− 2k + 1)(n− 2k +m+ 1)!

k!(n− k + 1)!(n− 2k −m)!(3/2)2
m

(− 3
4 + ix

m

)
= fn(x),

as claimed. �



APPENDIX B

Summary of main formulas

Series expansions for the Riemann xi function

Ξ(t) =

∞∑
n=0

(−1)na2nt
2n (p. 1)

Ξ(t) =

∞∑
n=0

(−1)nb2nH2n(t) (p. 7)

Ξ(t) =

∞∑
n=0

(−1)nc2nf2n

(
t

2

)
(p. 20)

Ξ(t) =

∞∑
n=0

(−1)nd2ng2n

(
t

2

)
(p. 47)

Series expansions for related functions

A(r) =

∞∑
n=0

c2nG
(3)
2n (r) (p. 35)

ν̃(t) =
1

2
√

2

∞∑
n=0

(3/2)2n

(2n)!
c2nt

2n (p. 42)

ν̃(t) =
1

2
√

2

∞∑
n=0

d2nU2n(t) (p. 59)

Formulas for the coefficients

a2n =
1

22n(2n)!

∫ ∞
0

ω(x)x−3/4(log x)2n dx (p. 1)

=
1

(2n)!

∫ ∞
−∞

x2nΦ(x) dx (p. 62)

b2n =
1

22n(2n)!

∫ ∞
−∞

x2ne−
x2

4 Φ(x) dx (p. 7)

=
(−1)n√
π22n(2n)!

∫ ∞
−∞

Ξ(t)e−t
2

H2n(t) dt (p. 7)

76
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c2n = 2
√

2

∫ ∞
0

ω(x)

(x+ 1)3/2

(
x− 1

x+ 1

)2n

dx (p. 20)

= (−1)n
√

2 (2n)!

π3/2(3/2)2n

∫ ∞
−∞

Ξ(t)f2n

(
t

2

) ∣∣∣∣Γ(3

4
+
it

2

)∣∣∣∣2 dt (p. 21)

=
8
√

2π(2n)!

(3/2)2n

∫ ∞
0

A(r)r2G
(3)
2n (r) dr (p. 34)

= 2

∫ 1

−1

t2nω̃(t) dt (p. 40)

d2n =
(3/2)2n

22n−3/2(2n)!

∫ ∞
0

ω(x)

(x+ 1)3/2

(
x− 1

x+ 1

)2n

2F1

(
n+

3

4
, n+

5

4
; 2n+ 2;

(
x− 1

x+ 1

)2
)
dx (p. 46)

=
8

π3
(−1)n

∫ ∞
−∞

Ξ(t)g2n

(
t

2

) ∣∣∣∣Γ(3

4
+
it

2

)∣∣∣∣4 dt (p. 48)

=
n+ 1

2n

∞∑
m=0

(3/2)n+2m

4mm!(n+m+ 1)!
cn+2m (p. 47)

=
4
√

2

π

∫ 1

−1

ν̃(t)U2n(t)
√

1− t2 dt (p. 59)

=
16

π
(2n+ 1)

∫ ∞
1

∫ 1

0

ω(x)

((x+ 1)2 − t(x− 1)2)3/4

(
t

1− t

)1/4(
t(1− t)(x− 1)2

(x+ 1)2 − t(x− 1)2

)n
dt dx (p. 55)

Asymptotic formulas for the coefficients

a2n =

(
1 +O

(
log log n

log n

))
π1/4

22n− 5
2 (2n)!

(
2n

log(2n)

)7/4

× exp

[
2n

(
log

(
2n

π

)
−W

(
2n

π

)
− 1

W
(

2n
π

))] (p. 62)

b2n =

(
1 +O

(
log log n

log n

))
π1/4

24n− 5
2 (2n)!

(
2n

log(2n)

)7/4

× exp

[
2n

(
log

(
2n

π

)
−W

(
2n

π

)
− 1

W
(

2n
π

))− 1

16
W

(
2n

π

)2
]

(p. 12)

c2n =
(

1 +O
(
n−1/10

))
16
√

2π3/2
√
n exp

(
−4
√
πn
)

(p. 21)

d2n =
(

1 +O
(
n−1/10

))(128× 21/3π2/3e−2π/3

√
3

)
n4/3 exp

(
−3(4π)1/3n2/3

)
(p. 47)
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[67] G. Pólya. On the zeros of an integral function represented by Fourier’s integral. Messenger of Math., 52:185–188, 1923.
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Progress In Inequalities, pages 381–396. Springer, 1998.

[80] J. H. Schwarz. The generalized Stieltjes transform and its inverse. J. Math. Phys., 46:013501, 2005.
[81] R. Spira. Zeros of sections of the zeta function. ii. Math. Comp., 22:163–173, 1968.
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