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Chapter 6

Hilbert Spaces

So far, in increasing order of specialization, we have studied topological spaces,
metric spaces, normed linear spaces, and Banach spaces. Hilbert spaces are Banach
spaces with a norm that is derived from an inner product, so they have an extra
feature in comparison with arbitrary Banach spaces, which makes them still more
special. We can use the inner product to introduce the notion of orthogonality in a
Hilbert space, and the geometry of Hilbert spaces is in almost complete agreement
with our intuition of linear spaces with an arbitrary (finite or infinite) number
of orthogonal coordinate axes. By contrast, the geometry of infinite-dimensional
Banach spaces can be surprisingly complicated and quite different from what naive
extrapolations of the finite-dimensional situation would suggest.

6.1 Inner products

To be specific, we consider complex linear spaces throughout this chapter. We use
a bar to denote the complex conjugate of a complex number. The corresponding
results for real linear spaces are obtained by replacing C by R and omitting the
complex conjugates.

Definition 6.1 An inner product on a complex linear space X is a map
(-, ): X xX—>C

such that, for all z,y,2 € X and A\, u € C:

(a) (z, Ay + pz) = Mz,y) + p(x, 2) (linear in the second argument);
(b) (y,z) = (z,y) (Hermitian symmetric);

(¢) (z,x) > 0 (nonnegative);

(d) (z,z) =0if and only if z = 0 (positive definite).

We call a linear space with an inner product an inner product space or a pre-Hilbert
space.
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126 Hilbert Spaces

From (a) and (b) it follows that (-, -) is antilinear, or conjugate linear, in the
first argument, meaning that

Az + py, z) = Mz, 2) + Ay, 2).

If X is real, then (-, -) is bilinear, meaning that it is a linear function of each
argument. If X is complex, then (-, -) is said to be sesquilinear, a name that
literally means “one-and-half” linear.

There are two conventions for the linearity of the inner product. In most of the
mathematically oriented literature (-, -) is linear in the first argument. We adopt
the convention that the inner product is linear in the second argument, which is
more common in applied mathematics and physics.

If X is a linear space with an inner product (-, -), then we can define a norm
on X by

llzll = v/ (2, ). (6.1)

Thus, any inner product space is a normed linear space. We will always use the
norm defined in (6.1) on an inner product space.

Definition 6.2 A Hilbert space is a complete inner product space.

In particular, every Hilbert space is a Banach space with respect to the norm in
(6.1).

Example 6.3 The standard inner product on C" is given by
n
(@,y) =) _ Ty,
j=1

where £ = (21,...,2,) and y = (y1,...,Yn), with z;,y; € C. This space is com-
plete, and therefore it is a finite-dimensional Hilbert space.

Example 6.4 Let C([a,b]) denote the space of all complex-valued continuous func-
tions defined on the interval [a,b]. We define an inner product on C([a,b]) by

b
(f.9) = / F@g(e) de,

where f,g : [a,b] — C are continuous functions. This space is not complete, so it
is not a Hilbert space. The completion of C([a,b]) with respect to the associated

norm,
b 1/2
171l = ( / @) dm> ,

is denoted by L?([a,b]). The spaces LP([a,b]), defined in Example 5.6, are Banach
spaces but they are not Hilbert spaces when p # 2.
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Similarly, if T is the circle, then L?(T) is the Hilbert space of square-integrable
functions f : T — C with the inner product

(f.9) = / F@)o(x) da.

Example 6.5 We define the Hilbert space £2(Z) of bi-infinite complex sequences
by

(7)) = {(zn)zo__oo Z |zn)? < oo}.

The space ¢2(Z) is a complex linear space, with the obvious operations of addition
and multiplication by a scalar. An inner product on it is given by

(#,9) = Y Tayn

n=—oo

The name “/?” is pronounced “little ell two” to distinguish it from L? or “ell two”

in the previous example. The space £%(N) of square-summable sequences (2,,)52; is

defined in an analogous way.

Example 6.6 Let C™"*™ denote the space of all m x n matrices with complex
entries. We define an inner product on C™*" by

(4, B) = tr (A*B),

where tr denotes the trace and * denotes the Hermitian conjugate of a matrix — that
is, the complex-conjugate transpose. In components, if A = (a;;) and B = (b;;),
then

(A,B)=)"

i=1j

[ b,’j .
1

m n

This inner product is equal to the one obtained by identification of a matrix in
C™*™ with a vector in C™"™. The corresponding norm,

1/2

4= (S aP) .

i=1 j=1

is called the Hilbert-Schmidt norm.

Example 6.7 Let C*([a, b]) be the space of functions with k continuous derivatives
on [a,b]. We define an inner product on C*([a,b]) by

k b '
(f9)=3 / F ()9 (z) da,
j=0va
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where f(9) denotes the jth derivative of f. The corresponding norm is

1/2

k b
=3 [ 10@pa) (6.2

j=0"¢
The space C*([a, b]) is an inner product space, but it is not complete. The Hilbert
space obtained by completion of C*([a, b]) with respect to the norm || - || is a Sobolev

space, denoted by H* ((a,b)). In the notation of Example 5.7, we have
H* ((a,b)) = W*? ((a,1)).

The following fundamental inequality on an inner product space is called the
Cauchy-Schwarz inequality.

Theorem 6.8 (Cauchy-Schwarz) If z,y € X, where X is an inner product
space, then

(@, )| < [l=[lllyll, (6.3)

where the norm || - || is defined in (6.1).

Proof. By the nonnegativity of the inner product, we have
0 < (A\z — py, Az — py)

for all z,y € X and A\,u € C. Expansion of the inner product, and use of (6.1),
implies that

Au(@,y) + iy, @) < P[] + [yl
If (z,y) = re’?, where r = |(z,y)| and ¢ = arg (z,y), then we choose
A= lylle,  p= izl
It follows that
2l (lllylll(z, )| < 2(lzlPly]1%,
which proves the result. d

An inner product space is a normed space with respect to the norm defined in
(6.1). The converse question of when a norm is derived from an inner product in
this way is answered by the following theorem.

Theorem 6.9 A normed linear space X is an inner product space with a norm
derived from the inner product by (6.1) if and only if

e +ylI” + llz — ylI* = 2l|z]|* + 2lly|>  forall 2,y € X. (6.4)
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X+y

X
Fig. 6.1 The geometric interpretation of the parallelogram law (6.4).
Proof. Use of (6.1) to write norms in terms of inner products, and expansion

of the result, implies that (6.4) holds for any norm that is derived from an inner
product. Conversely, if a norm satisfies (6.4), then the equation

1 . . , .
(@,9) = 7 {llz + yll* = llz = ylI* —dllz + iyll® + illz — iy} (6.5)

defines an inner product on X. We leave a detailed verification of this fact to the
reader. O

The relation (6.4) is called the parallelogram law. Its geometrical interpretation
is that the sum of the squares of the sides of a parallelogram is equal to the sum
of the squares of the diagonals (see Figure 6.1). As the polarization formula (6.5)
shows, an inner product is uniquely determined by its values on the diagonal, that
is, by its values when the first and second arguments are equal.

Let (X, (-, -)x) and (Y, (-, -)y) be two inner product spaces. Then there is a
natural inner product on the Cartesian product space

XxY={(z,y) |z€e X,yeY}
given by
(#1,91); (T2,92)) x v = (@1, 22)x + (Y1, ¥2)v-

The associated norm on X x Y is

I, )|l = VIl=ll* + llylI>

Unless stated otherwise, we will use this inner product and norm on the Cartesian
product of two inner product spaces.

Theorem 6.10 Let X be an inner product space. The inner product is a continu-
ous map from X x X — C.
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Proof. For all x1,x2,y1,y2 € X, the Cauchy-Schwarz inequality implies that

|(@1,91) = (®2,92)] = |(#1 — 22,91) + (T2, 91 — ¥2)|
<z = 2o [y || + (|22l lyr — y2l-

This estimate implies the continuity of the inner product. O

6.2 Orthogonality

Let H be a Hilbert space. We denote its inner product by (-,-), which is another
common notation for inner products that is often reserved for Hilbert spaces. The
inner product structure of a Hilbert space allows us to introduce the concept of
orthogonality, which makes it possible to visualize vectors and linear subspaces of
a Hilbert space in a geometric way.

Definition 6.11 If z, y are vectors in a Hilbert space H, then we say that z and
y are orthogonal, written z L y, if (z,y) = 0. We say that subsets A and B are
orthogonal, written A | B, if x 1 y for every x € A and y € B. The orthogonal
complement AL of a subset A is the set of vectors orthogonal to A,

At ={zeH|z Lyforally € A}.

Theorem 6.12 The orthogonal complement of a subset of a Hilbert space is a
closed linear subspace.

Proof. Let H be a Hilbert space and A a subset of H. If y,z € At and A\, u € C,
then the linearity of the inner product implies that

(z, \y + pz) = Mz,y) + plz,2) =0 for all z € A.

Therefore, Ay + puz € A+, so At is a linear subspace.

To show that AL is closed, we show that if (y,,) is a convergent sequence in AL,
then the limit y also belongs to At. Let z € A. From Theorem 6.10, the inner
product is continuous and therefore

(z,y) = (, lim y,) = lim (z,y,) =0,
since (z,y,) = 0 for every x € A and y,, € A*. Hence, y € A™. O

The following theorem expresses one of the fundamental geometrical properties
of Hilbert spaces. While the result may appear obvious (see Figure 6.2), the proof
is not trivial.

Theorem 6.13 (Projection) Let M be a closed linear subspace of a Hilbert space
H.
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Fig. 6.2 y is the point in M closest to .

(a) For each z € H there is a unique closest point y € M such that
llz = yll = min [lo — 2| (6.6)
(b) The point y € M closest to z € H is the unique element of M with the
property that (z —y) L M.
Proof. Let d be the distance of & from M,
d=inf{||lz—z|| | z € M}. (6.7)

First, we prove that there is a closest point y € M at which this infimum is attained,
meaning that ||z — y|| = d. From the definition of d, there is a sequence of elements
Yn € M such that

lim [z~ g = d.
Thus, for all € > 0, there is an N such that
|z —ynl| < d +€ when n > N.
We show that the sequence (y,) is Cauchy. From the parallelogram law, we have
[ym = ynll® + 1122 = ym — yal* = 2/|z — ym|” + 2[lz — yall*.
Since (Ym + yn)/2 € M, equation (6.7) implies that

lz = (ym +yn)/2l = d.
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Combining these equations, we find that for all m,n > N,

lym = yal® = 20z = yml® + 2/|2 = yall® = 122 = ym — yall?
< 4(d+e€)? —4d?
< 4e(2d+€).

Therefore, (y,) is Cauchy. Since a Hilbert space is complete, there is a y such that
Yn — Y, and, since M is closed, we have y € M. The norm is continuous, so
o = yll = limp o0 1o — yull = d.

Second, we prove the uniqueness of a vector y € M that minimizes ||z — y|.
Suppose y and ' both minimize the distance to z, meaning that

lz—yll=d,  llz—y'll=d
Then the parallelogram law implies that
2w —yll* + 20z - y'IIP =12z —y = ¢'I” + [ly — 'II*.
Hence, since (y +y')/2 € M,
lly —y'lI* = 4d* — 4l|lz — (y +y")/2I]” < 0.

Therefore, ||y — y'|| = 0 so that y = y'.

Third, we show that the unique y € M found above satisfies the condition that
the “error” vector x — y is orthogonal to M. Since y minimizes the distance to z,
we have for every A € C and z € M that

llz = ylI* < llz -y + Azl
Expanding the right-hand side of this equation, we obtain that
2Re Mw — y,2) < \IJ2]1%

Suppose that (z —y,2) = |{(x —y,2)|e?. Choosing A\ = ee~, where € > 0, and
dividing by €, we get

2|(z —y,2)| < ell2]*.

Taking the limit as € — 07, we find that (x —y,2) =0, so (z —y) L M.

Finally, we show that y is the only element in M such that x —y L M. Suppose
that gy’ is another such element in M. Then y —y' € M, and, for any z € M, we
have

(z,y—y") =(z,2—y) —(z,2-y) =0.
In particular, we may take z = y — ', and therefore we must have y = y'. O

The proof of part (a) applies if M is any closed convex subset of H (see Exer-
cise 6.1). Theorem 6.13 can also be stated in terms of the decomposition of H into
an orthogonal direct sum of closed subspaces.
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Definition 6.14 If M and N are orthogonal closed linear subspaces of a Hilbert
space, then we define the orthogonal direct sum, or simply the direct sum, M & N
of M and N by

MeN={y+z|lye Mand ze N}.

We may also define the orthogonal direct sum of two Hilbert spaces that are not
subspaces of the same space (see Exercise 6.4).

Theorem 6.13 states that if M is a closed subspace, then any © € H may be
uniquely represented as x = y + z, where y € M is the best approximation to z,
and z 1 M. We therefore have the following corollary

Corollary 6.15 If M is a closed subspace of a Hilbert space H, then H = M® M=,

Thus, every closed subspace M of a Hilbert space has a closed complementary
subspace M=. If M is not closed, then we may still decompose H as H = MO M.
In a general Banach space, there may be no element of a closed subspace that is
closest to a given element of the Banach space (see Exercise 6.2), and a closed linear
subspace of a Banach space may have no closed complementary subspace. These
facts are one indication of the much murkier geometrical properties of infinite-
dimensional Banach spaces in comparison with Hilbert spaces.

6.3 Orthonormal bases

A subset U of nonzero vectors in a Hilbert space H is orthogonal if any two distinct
elements in U are orthogonal. A set of vectors U is orthonormal if it is orthogonal
and ||u|| = 1 for all w € U, in which case the vectors u are said to be normalized. An
orthonormal basis of a Hilbert space is an orthonormal set such that every vector
in the space can be expanded in terms of the basis, in a way that we make precise
below. In this section, we show that every Hilbert space has an orthonormal basis,
which may be finite, countably infinite, or uncountable. Two Hilbert spaces whose
orthonormal bases have the same cardinality are isomorphic — any linear map that
identifies basis elements is an isomorphism — but many different concrete realiza-
tions of a given abstract Hilbert space arise in applications. The most important
case in practice is that of a separable Hilbert space, which has a finite or countably
infinite orthonormal basis. As shown in Exercise 6.10, this condition is equivalent
to the separability of the Hilbert space as a metric space, meaning that it contains
a countable dense subset.

Before studying orthonormal bases in general Hilbert spaces, we give some ex-
amples.

Example 6.16 A set of vectors {e1,...,e,} is an orthonormal basis of the finite-
dimensional Hilbert spaces C™ if:
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(a) (ej,er) =3k for 1 < j,k <mn;
(b) for all z € C" there are unique coordinates x € C such that

mzzajkek, (6-8)
k=1

where §;, is the Kronecker delta defined in (5.25). The orthonormality of the basis
implies that z; = (eg,z). For example, the standard orthonormal basis of C"
consists of the vectors

e1 = (1,0,...,0), ex=(0,1,...,0),..., e,=(0,0,...,1).

Example 6.17 Consider the Hilbert space £2(Z) defined in Example 6.5. An or-
thonormal basis of £2(Z) is the set of coordinate basis vectors {e, | n € Z} given
by
en, = (ék")zi—oo .
For example,
eq1=(..,0,1,0,0,0,...), g =(...,0,0,1,0,0,...), e1 =(...,0,0,0,1,0,...).
Example 6.18 The set of functions {e,(z) | n € Z}, given by

1 .
en(aj) = \/_2_7Telnz,

is an orthonormal basis of the space L?(T) of 2m-periodic functions, called the
Fourier basis. We will study it in detail in the next chapter. As we will see, the
inverse Fourier transform F~1 : £2(Z) — L?(T), defined by

— ;
F Y er) = Wor > ke,
k=—oc0

is a Hilbert space isomorphism between ¢2(Z) and L?(T). Both Hilbert spaces are
separable with a countably infinite basis.

Example 6.19 A function that is a sum of finitely many periodic functions is said
to be quasiperiodic. If the ratios of the periods of the terms in the sum are rational,
then the sum is itself periodic, but if at least one of the ratios is irrational, then the
sum is not periodic. For example,

f(t) — eit + ei7rt

is quasiperiodic but not periodic. Let X be the space of quasiperiodic functions
f : R = C of the form

n
f(t) — Z akeiwkt7
k=1
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where n € N, ap € C, and w; € R are arbitrary constants. We may think of
t as a time variable, in which case f is a sum of time-harmonic functions with
amplitudes |ag|, phases argay, and frequencies wy. When some of the frequencies
are incommensurable, the function f “almost” repeats itself, but it is not periodic
with any period, although it is bounded.

We define an inner product on X by means of the time average,

(f,9) = lm %/_ng(t) dt.

If f(t) =Y, are™*t and g(t) = > ,_, bre™*t, where w; # wy, for j # k, then

k=1

The inner product may also be written as

where tg is any fixed time independent of T'. The set of functions
{e“* |w e R} (6.9)

is an orthonormal set in X. The space X is an inner product space, but it is not
complete. We call the completion of X the space of L?-almost periodic functions.
This space consists of equivalence classes of functions of the form

f(t) = i are !, (6.10)
k=1

where }~77, |ak|* < 0o. The sum converges in norm, meaning that for any ¢, € R,

1 [T 2
%E%oﬁ/T

n

F&) = ape™+!

k=1

dt -0 asn— .

The set in (6.9) is an uncountable orthonormal basis of this Hilbert space, so the
space is not separable.

Although in the future we will mainly consider separable Hilbert spaces, it is
worth postponing this restriction for a little while. First, we say what we mean by
a sum with a possibly uncountable number of terms. This definition also clarifies
the sense in which our infinite sums converge, which is stronger than the sense in
which infinite series converge.



136 Hilbert Spaces

Definition 6.20 Let {z, € X | @ € I} be an indexed set in a Banach space X,
where the index set I may be countable or uncountable. For each finite subset J of
I, we define the partial sum S; by

Sy = Zxa.

aeJ

The unordered sum of the indexed set {z, | @ € I'} converges to z € X, written

T = Zma, (6.11)

acl

if for every € > 0 there is a finite subset J¢ of I such that ||S; — z|]| < € for
all finite subsets J of I that contain J¢. An unordered sum is said to converge
unconditionally.

All the sums in this chapter are to be interpreted as unordered sums. The
convergence of finite partial sums Sy, indexed by finite subsets J of I, is a special
case of the convergence of nets [12]. It is easy to see that an unordered sum converges
if and only if any permutation of its terms converges, and the sum is independent
of the ordering of its terms.

A sum ) ., x, is said to converge absolutely if the sum ) _; ||lza| of non-
negative numbers converges unconditionally. The unordered sum of a sequence of
real or complex numbers exists if and only if the corresponding series is absolutely
convergent. An absolutely convergent sum in an infinite-dimensional Banach space
converges unconditionally, but an unconditionally convergent sum need not converge
absolutely (see Exercise 6.8 for an example).

If an unordered sum ) ;. converges to x, then for each n € N, there is a
finite J,, C I such that for all J containing J,,, one has ||S; — z|| < 1/n. It follows
that 2o = 0 if a ¢ |,y Jn, S0 a convergent unordered sum has only countably
many nonzero terms. Moreover, there is a sequence (S, ) of finite partial sums that
converges to z as n — 0o. The continuity of the inner product implies that

<Zxaazyﬂ> = Z <$aay,@>‘
a€l BeJ (a,B)eIxJ

There is a generalization of the Cauchy criterion for the convergence of series to
unordered sums.

Definition 6.21 An unordered sum ) ;2o is Cauchy if for every € > 0 there is
a finite set J¢ C I such that ||Sk|| < € for every finite set K C I\ J°.

Proposition 6.22 An unordered sum in a Banach space converges if and only if
it is Cauchy.
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Proof. First, suppose that the unordered sum ) ., 2, converges to z. Let € > 0.
By the definition of convergence, there is a finite set J¢ such that ||Sy — z|| < €/2
for all finite sets J that contain J¢. If K is any finite subset of I\ J¢, then we let
J=J¢UK. Since J contains J¢, we have

ISkl = IS; — Sy <e.

< ISy = =l| + [l = S,

Hence, the sequence is Cauchy.

Conversely, suppose that an unordered sum is Cauchy. Let J,, be finite subsets
of I such that ||Sk|| < 1/n for every K C I\ J,. Without loss of generality,
we may assume that J, C Jp41 for all n. It follows that for all n < m we have
1S, —Ss.|| < 1/n, which shows that the sequence (S, ) is Cauchy; hence, since
a Banach space is complete, it converges to a point z. To complete the proof, we
show that the unordered sum converges to . Given ¢ > 0, we pick n such that
1/n < €/2 and put J¢ = J,. If J is a finite set that contains J¢, then the Cauchy
criterion for the set J, and the convergence of the sequence (Sy,) to x imply that

2
1Ss — || < ISy = Sz || +ISs, — 2| < = <e.
n (|
We may use the Cauchy criterion to give a simple necessary and sufficient con-
dition for the unconditional convergence of a sum of orthogonal terms in a Hilbert
space.

Lemma 6.23 Let U = {u, | @ € I'} be an indexed, orthogonal subset of a Hilbert
space H. The sum ) .  uqo converges unconditionally if and only if Y/ [luall* <
00, and, in that case,

= 3 llual™ (6.12)

a€cl

D ua

acl

Proof. For any finite set J we have
2

Zua = Z (Ua,up) = Z(Umua> = Z l[uall?.

a€J a,BET aed acd

It follows that the Cauchy criterion is satisfied for ) _;uo if and only if it is
satisfied for Y., |lual/®*. Thus, one of the sums converges unconditionally if and
only if the other does. Equation (6.12) follows because the sum is the limit of a
sequence of finite partial sums and the norm is a continuous function. O

When combined with the following basic estimate, this lemma will imply that
every element of a Hilbert space can be expanded with respect to an orthonormal
basis.

Theorem 6.24 (Bessel’s inequality) Let U = {uy | @ € I} be an orthonormal
set in a Hilbert space H and x € H. Then:
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(@) Yaer l{ta, 2)* < Izl
(b) zv =41 (Uas T)uq is a convergent sum;
(¢) z—zy € UL.

Proof. We begin by computing ||z — )" . ;(ta, T)ue|| for any finite subset J C I:

x— Z(ua,m)ua < (:1: - Z(ua,m)ua> sz — Z(Uﬁ,x)'ltﬁ >

8

aeJ aeJ BeJ
= <$,$)—-j£3<ug,$)<$,Ug)-— 2{:(ua,w)<ua,w)
peJ aelJ
+ Y (ta, ) (ug, 7)(ta, up)
a,BET
= lzll* = D I{ua, )
acJ
Hence
2
D g, @) = llzll? = |2 = D (o, Dhua|| < llz1>.

acJ acJ

Since 3", ¢ [(ta,z)|* is a sum of nonnegative numbers that is bounded from above
by ||z||?, it is Cauchy. Therefore the sum converges and satisfies (a). The conver-
gence claimed in (b) follows from an application of Lemma 6.23.

In order to prove (c), we consider any u,, € U. Using the orthonormality of U
and the continuity of the inner product, we find that

<w - Z(ua,x)ua,uao> = (@, Ua0) = Y (Ua, T) (ta; Ua)

acl acl
(mauao)__<xauao>::0'

Hence, £ — >, o {Ua, T)uq € UL. O
Given a subset U of H, we define the closed linear span [U] of U by

[U] = {Z Cull ‘ cy € Cand ), iy cyu converges unconditionally} . (6.13)
u€eU

Equivalently, [U] is the smallest closed linear subspace that contains U. We leave
the proof of the following lemma to the reader.

Lemma 6.25 If U = {u, | o € I} is an orthonormal set in a Hilbert space H, then

[U] = {Z Calla

acl

ca € Csuch that Y o |cal® < oo} :
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By combining Theorem 6.13 and Theorem 6.24 we see that xy;, defined in part
(b) of Theorem 6.24, is the unique element of [U] satisfying

r— xzy|| = min ||z — u|.
e~ all = min Iz — ul

In particular, if [U] = H, then zy = z, and every z € H may be expanded in
terms of elements of U. The following theorem gives equivalent conditions for this
property of U, called completeness.

Theorem 6.26 If U = {u, | a € I} is an orthonormal subset of a Hilbert space
H, then the following conditions are equivalent:

Proof. We prove that (a) implies (b), (b) implies (c), (c) implies (d), (d) implies
(e), and (e) implies (a). The condition in (a) states that U+ = {0}. Part (c) of The-
orem 6.24 then implies (b). The fact that (b) implies (c) follows from Lemma 6.23.
To prove that (c) implies (d), we observe that (c) implies that U+ = {0}, which
implies that [U]* = {0}, so [U] = H. Condition (e) means that if V is a subset of H
that contains U and is strictly larger than U, then V is not orthonormal. To prove
that (d) implies (e), we note from (d) that any v € H is of the form v =} ; catta,
where ¢, = {uq4,v). Therefore, if v L U then ¢, = 0 for all @, and hence v = 0, so
U U {v} is not orthonormal. Finally, (e) implies (a), since (a) is just a reformulation
of (e). O

In view of this theorem, we can make the following definition.

Definition 6.27 An orthonormal subset U = {u,, | @ € I'} of a Hilbert space H is
complete if it satisfies any of the equivalent conditions (a)—(e) in Theorem 6.26. A
complete orthonormal subset of H is called an orthonormal basis of H.

Condition (a) is often the easiest condition to verify. Condition (b) is the prop-
erty that is used most often. Condition (c) is called Parseval’s identity. Condition
(d) simply expresses completeness of the basis, and condition (e) will be used in
the proof of the existence of an orthonormal basis in an arbitrary Hilbert space (see
Theorem 6.29).

The following generalization of Parseval’s identity shows that a Hilbert space H
with orthonormal basis {us | @ € I} is isomorphic to the sequence space ¢2(I).

Theorem 6.28 (Parseval’s identity) Suppose that U = {u, | @ € I} is an
orthonormal basis of a Hilbert space H. If z = EaeI aqug and y = Zael oy,
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where a, = (uq, z) and by = (uq,y), then

(@,y) = Taba-

acl

To show that every Hilbert space has an orthonormal basis, we use Zorn’s lemma,
which states that a nonempty partially ordered set with the property that every
totally ordered subset has an upper bound has a maximal element [49].

Theorem 6.29 Every Hilbert space H has an orthonormal basis. If U is an or-
thonormal set, then H has an orthonormal basis containing U.

Proof. 1If H = {0}, then the statement is trivially true with U = (), so we assume
that # # {0}. We introduce a partial ordering < on orthonormal subsets of H by
inclusion, so that U < V if and only if U C V. If {U, | @ € A} is a totally ordered
family of orthonormal sets, meaning that for any «, 8 € A we have either U, < Ug
or Ug < Uy, then |J,c 4 Ua is an orthonormal set and is an upper bound, in the
sense of inclusion, of the family {U, | @ € A}. Zorn’s Lemma implies that the
family of all orthonormal sets in ‘H has a maximal element. This element satisfies
(e) in Theorem 6.26, and hence is a basis. To prove that any orthonormal set U
can be extended to an orthonormal basis of H, we apply the same argument to the
family of all orthonormal sets containing U. O

The existence of orthonormal bases would not be useful if we did not have
a means of constructing them. The Gram-Schmidt orthonormalization procedure
is an algorithm for the construction of an orthonormal basis from any countable
linearly independent set whose linear span is dense in H.

Let V be a countable set of linearly independent vectors in a Hilbert space H.
The Gram-Schmidt orthonormalization procedure is a method of constructing an
orthonormal set U such that [U] = [V], where the closed linear span [V] of V
is defined in (6.13). We denote the elements of V' by wv,. The orthonormal set
U = {u,} is then constructed inductively by setting uq = v1/||v1]|, and

n
Unt1 = Cnti (vn+1 - E (uk,vn+1)uk>

k=1

for all n > 1. Here ¢,41 € C is chosen so that ||u,y1|| = 1. It is straightforward to
check that [{vi,...,vn}] = [{v1,..-,un}] for all n > 1, and hence that

V1= U lots s o} = Y Hus -y und] = [U]:

n

Example 6.30 Let (a,b) C R be a finite or infinite interval and w : (a,b) = R a
continuous function such that w(z) > 0 for a < x < b. We define a weighted inner
product on

Cy([a,b]) = {f : [a,b] = C | f continuous and f:11)(:z,")|f(:z:)|2 dx < oo}
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b [
(f,g):/ w(z) f(x)g(x) dx.

Let L2 ([a,b]) be the Hilbert space obtained by the completion of C,,([a,b]) with
respect to the norm derived from this inner product. The Gram-Schmidt procedure
applied to the set of monomials {z" | n > 0} gives an orthonormal basis of polyno-
mials for this Hilbert space. The simplest case is that of the space L?([—1,1]), with
the usual unweighted inner product, which leads to the Legendre polynomials (see
Exercise 6.12). The Tchebyschev polynomials are obtained from Gram-Schmidt

orthonormalization of the monomials in L2,([—1,1]) where w(z) = (1 — 3:2)1/ ? (see
Exercise 6.13). The Hermite polynomials are obtained by Gram-Schmidt orthonor-
malization of the monomials in the space L2 (R) with the Gaussian weight function
w(z) = e=*/2 (see Exercise 6.14). For a description of other polynomials that arise
in this way, such as the Jacobi and Laguerre polynomials, see [5].

6.4 Hilbert spaces in applications

In this section, we describe several applications in which Hilbert spaces arise natu-
rally.

The first is quantum mechanics. The introduction of quantum mechanics in the
1920s represents one of the most profound shifts in history of our understanding
of the physical world. The theory developed at a feverish pace, and people hardly
had time to pause to think about the mathematical structures they were inventing
and using. Only later was it realized, by von Neumann, that Hilbert spaces are the
natural setting for quantum mechanics.

One of the simplest quantum mechanical systems consists of a particle, such
as an electron, confined to move in a straight line between two parallel walls: the
“particle in a box.” Quantum effects are important when the kinetic energy of the
particle is comparable with E = h?/(2mL?), where m is the mass of the particle, &
is Planck’s constant, and L is the distance between the walls. Planck’s constant has
the dimensions of action, or energy times time, so E has the dimensions of energy.

In quantum mechanics, the state of the particle at each instant in time ¢ is de-
scribed by an element (-, t) € L2([0, L)), that is, a vector in the Hilbert space of
square-integrable, complex-valued functions on the interval [0, L]. The function %
is called the wavefunction of the particle. This description contrasts with classical,
Newtonian mechanics, where the state of the particle is described by just two num-
bers: the position 0 < z < L and the velocity v € R. The physical interpretation
of the wavefunction is that || is a probability density. If the position = of the
particle is measured at some time ¢, then the probability of observing the particle
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in some interval [a, b], where 0 < a < b < L, is given by

b

S, (@, ) do
-

Jo ¥(@,1)? do

The dynamics of the quantum mechanical particle is described by a partial

differential equation for the wavefunction, called the Schrodinger equation. For the
particle in a box, the Schrédinger equation is

Pr [particle is in the interval [a, b] at time ] =

ﬁ2
; = —— L R, .14
ltht 2m¢zwa T€E [07 ]7 te / (6 )

with the boundary conditions 1(0,t) = ¢(L,t) = 0 for all t € R.
A second way in which L2-spaces arise naturally is as “energy’
quantity

)

spaces. The

[15@P ds (6.15)

often represents the total energy of a physical system, or some other fundamental
quantity, and one often wants to restrict attention to systems for which this quantity
is finite. For example, in fluid mechanics, if u(x) is the velocity of a fluid at the
point x, then

] mGoP ax,

where | - | denotes the Euclidean norm of a vector, is proportional to the kinetic
energy of the fluid in V. This energy should be finite for any region V' with finite
volume. An electromagnetic field is described by two vector fields, the electric field
E and the magnetic field B. In suitable units, the energy of the electromagnetic
field in a region V is given by

[ {IBGP +[BEP) dx.
\4

The requirement of finite energy leads naturally to the requirement that E and B
belong to appropriate L2-spaces.

A third area in which Hilbert spaces arise naturally is in probability theory.
As we discuss in greater detail in Chapter 12, a random experiment is modeled
mathematically by a space (2, called the sample space, and a probability measure P
on . Each point w € Q corresponds to a possible outcome of the experiment. An
event A is a measurable subset of . The probability measure P associates with
each event A a probability P(A), where 0 < P(4) <1 and P(Q) = 1.

A random variable X is a measurable function X : @ — C, which associates
a number X (w) with each possible outcome w € . The expected value EX of a
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random variable X is the mean, or integral, of the random variable X with respect
to the probability measure P,

EX = / X (w) dP(w).
Q
A random variable X is said to be second-order if
EX|* < oo.

The set of second-order random variables forms a Hilbert space with respect to the
inner product

(X,Y) =E[XY],

where we identify random variables that are equal almost surely. Here, “almost
surely” is the probabilistic terminology for “almost everywhere,” so that two random
variables are equal almost surely if they are equal on a subset of Q which has
probability one. The space of second-order random variables may be identified with
the space L?(12, P) of square-integrable functions on (£2, P), with the inner product

<xn=£f@wwww.

The Cauchy-Schwarz inequality and the fact that E1 = 1 imply that a second-order
random variable has finite mean, since

[EX| = |(1,X)| <E[|X]]"”.

Thus, the Hilbert space of second-order random variables consists of the random
variables with finite mean and finite variance, where the variance Var X of a random
variable X is defined by

VarX = E [|X - EX|2] .
Two random variables X, Y are uncorrelated if
E[XY] = EX EY.

In particular, two random variables with zero mean are uncorrelated if and only if
they are orthogonal.

6.5 References

The material of this chapter’s introduction to Hilbert space is covered in Chapter
4 of Rudin [49], and also in Simmons [50]. Halmos [20] contains a large number of
problems on Hilbert spaces, together with hints and solutions. For an introduction
to probability theory, see Grimmett and Stirzaker [17].
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6.6 Exercises

Exercise 6.1 Prove that a closed, convex subset of a Hilbert space has a unique
point of minimum norm.

Exercise 6.2 Consider C([0,1]) with the sup-norm. Let

1
v={recqu| [ @0
0
be the closed linear subspace of C([0,1]) of functions with zero mean. Let

x ={recq)| 10 =0}
and define M = N N X, meaning that

Mz{feC([O,l])‘f(O)zo, /Olf(x)dx:O}.

(a) If u € C([0,1]), prove that
N) = inf |[u—n|=u
A(uw, N) = inf [~ = fal,
where |[g| = fol u(z) dz is the mean of u, so the infimum is attained when

n=u—ué€N.
(b) If u(z) = z € X, show that

d(z,M) = inf - =1/2
(e, M) = inf [u—mi|=1/2,
but that the infimum is not attained for any m € M.

Exercise 6.3 If A is a subset of a Hilbert space, prove that
AL =7t
where A is the closure of A. If M is a linear subspace of a Hilbert space, prove that
M =M.
Exercise 6.4 Suppose that H; and Hs are two Hilbert spaces. We define
Hi @ Ha = {(z1,22) | 21 € H1, T2 € Ha}
with the inner product
((@1,72), (W1, y2))r10m> = (T1,Y1)4: + (T2, Y2) o

Prove that H; @ Hs is a Hilbert space. Find the orthogonal complement of the
subspace {(z1,0) | 1 € H1}.
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Exercise 6.5 Suppose that {#,, | n € N} is a set of orthogonal closed subspaces of
a Hilbert space H. We define the infinite direct sum

B Ha = {an 2 € Hy and T52, ol l? < oo} |
n=1 n=1

Prove that @, , H, is a closed linear subspace of #.
Exercise 6.6 Prove that the vectors in an orthogonal set are linearly independent.

Exercise 6.7 Let {z,}acs be a family of nonnegative real numbers. Prove that

Zma = sup{z To | JCIand Jis ﬁnite} .
a€el acJ

Exercise 6.8 Let {z, | n € N} be an orthonormal set in a Hilbert space. Show
that the sum Y ° | x,/n converges unconditionally but not absolutely.

Exercise 6.9 Prove Lemma 6.25.

Exercise 6.10 Prove that a Hilbert space is a separable metric space if and only
if it has a countable orthonormal basis.

Exercise 6.11 Prove that if M is a dense linear subspace of a separable Hilbert
space H, then H has an orthonormal basis consisting of elements in M. Does the
same result hold for arbitrary dense subsets of H?

Exercise 6.12 Define the Legendre polynomials P, by

Pu(e) = — L (22 _1)".
2nn! dzn
(a) Compute the first few Legendre polynomials, and compare with what you
get by Gram-Schmidt orthogonalization of the monomials {1,z,z2,...} in
L2([_17 1])
(b) Show that the Legendre polynomials are orthogonal in L?([—1,1]), and that
they are obtained by Gram-Schmidt orthogonalization of the monomials.

(c) Show that
1
2
P, (2)? dz = .
/_ [n(@)de =507

(d) Provethat the Legendre polynomials form an orthogonal basis of L?([—1, 1]).
Suppose that f € L2([—1,1]) is given by

f(z) = Z cn P ().
n=0

Compute ¢, and say explicitly in what sense the series converges.
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(e) Provethat the Legendre polynomial P, is an eigenfunction of the differential
operator

d d
L=——(1-2%) —
with eigenvalue A\, = n(n + 1), meaning that

LP, = A\, P,.

Exercise 6.13 Let H be the Hilbert space of functions f : [-1,1] — C such that

1 2
/()]
—————dx < o0,
—1 \/1—.%'2 v o

with the inner-product
—
f(z)g(z)
9) = dx.
(f,9) /_1 Tz
Show that the T'chebyshev polynomials,

T,(z) = cos(nb) where cosf =z and 0 < 6 <,

n=20,1,2,..., form an orthogonal set in #, and
™
ITll=va,  ITall=y/5 n>1
Exercise 6.14 Define the Hermite polynomials H,, by

Hy(z) = (_1)%”62(2—"” (e—f) .

(a) Show that
on(x) = e 2 H, (2)

is an orthogonal set in L?(R).
(b) Show that the nth Hermite function ¢, is an eigenfunction of the linear

operator
H= —% + 2
with eigenvalue
An=2n+ 1.
HINT: Let
A=i+m, A*=——+1z

dx dx
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Show that
App, =2npn_1, A*pn =¢npy1, H=AA"—1.

In quantum mechanics, H is the Hamiltonian operator of a simple harmonic
oscillator, and A* and A are called creation and annihilation, or ladder,
operators.



