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Abstract. Inverse scattering from discrete targets with the single-input-multiple-output (SIMO),
multiple-input-single-output (MISO) or multiple-input-multiple-output (MIMO) measurements is
analyzed by compressed sensing theory with and without the Born approximation.

High frequency analysis of (probabilistic) recoverability by the L1-based minimization/regularization
principles is presented. In the absence of noise, it is shown that the L1-based solution can recover
exactly the target of sparsity up to the dimension of the data either with the MIMO measurement
for the Born scattering or with the SIMO/MISO measurement for the exact scattering. The sta-
bility with respect to noisy data is proved for weak or widely separated scatterers. Reciprocity
between the SIMO and MISO measurements is analyzed.

1. Introduction

A monochromatic wave u propagating in a heterogeneous medium characterized by a variable
refractive index n =

√
1 + ν is governed by the Helmholtz equation

∆u(r) + ω2(1 + ν(r))u(r) = 0(1)

where ν ∈ C describes the medium inhomogeneities. For simplicity, the wave velocity is assumed
to be unity and hence the wavenumber ω equals the frequency.

Consider the plane wave incidence

ui(r) = eiωr·d(2)

where d ∈ Sd−1, d = 2, 3, is the incident direction. The scattered field us = u− ui then satisfies

∆us + ω2us = −ω2νu(3)

which can be written as the Lippmann-Schwinger equation:

us(r) = ω2

∫
Rd

ν(r′)
(
ui(r′) + us(r′)

)
G(r, r′)dr′(4)

where G is the Green function for the operator −(∆ + ω2) (see Appendix A for the reciprocal
formulation).

The scattered field has the far-field asymptotic [34]

us(r) =
eiω|r|

|r|(d−1)/2

(
A(r̂,d) +O

(
1

|r|

))
, r̂ = r/|r|, d = 2, 3(5)

where the scattering amplitude A is determined by the formula [43]

A(r̂,d) =
ω2

4π

∫
Rd

ν(r′)u(r′)e−iωr
′·r̂dr′.(6)

In the inverse scattering theory, the scattering amplitude is the observable data and the main
objective then is to reconstruct ν from the knowledge of the scattering amplitude. In this paper,
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Figure 1. Far-field imaging geometry

we use the L1-minimization principle called the Basis Pursuit to study the inverse scattering from
point scatterers. Note that since u in (6) is part of the unknown, the inverse scattering problem
is nonlinear. Physically speaking, the nonlinearity is the consequence of multiple scattering among
the different scatterers.

The standard theory of inverse scattering asserts the injectivity of the mapping from ν ∈ C1
c

with a nonnegative imaginary part to the corresponding scattering amplitude for a fixed frequency
in three (or higher) dimensions (Theorem 5.5 of [12]. See also [23, 34, 39, 40, 42] for similar
results, [28, 36, 37, 44] for inverse boundary-value problem and [13, 29, 30, 34] for inverse obstacle
scattering ). In this case, the refractive index can be determined uniquely by the full knowledge of
A(r̂,d), ∀d, r̂, for a fixed ω. Indeed, as A is analytic in both d and r̂, it suffices to know A for a
countably many incident and sampling directions in order to determine ν uniquely. As far as we
know, the uniqueness in two dimensions with a fixed frequency is still an open question. What is
known for two dimensions is that the uniqueness holds if the scattering amplitude is given for an
interval of frequencies [12].

Of obvious theoretical interest, the uniqueness result by itself is of limited practical interest. All
existing methods for determining the refractive index without linearizing the problem are based
on the constrained nonlinear optimization in the L2-norm for which the exact recoverability is
usually difficult to establish, especially in the case of undersampling [12, 13]. In this paper we show
that a target is the unique, global minimizer of an optimization principle based on the L1-norm
if the target satisfies certain sparsity constraint. Moreover, this L1-minimization problem can be
effectively solved by linear programming as well as various low-complexity greedy algorithms.

In this paper we focus on the two dimensional setting (r = (x, z) ∈ R2) for the aforementioned
reason as well as the notational simplicity. Although the details of the results are dimension-
dependent, our approach is not limited to two dimensions. We discuss the three dimensional case
briefly in Sections 2.4 and 2.4.

Consider the medium with point scatterers located in a square lattice L = {ri = (xi, zi) : i = 1, ...,m}
of spacing `. The total number m of grid points in L is a perfect square. Without loss of generality,
assume xj = j1`, zj = j2` where j = (j1 − 1)

√
m + j2 and j1, j2 = 1, ...,

√
m. Let νj , j = 1, ...,m

be the strength of the scatterers. Let S =
{
rij = (xij , zij ) : j = 1, ..., s

}
be the locations of the

scatterers. Hence νj = 0,∀rj 6∈ S. When there is no risk of confusion, we shall write ν = (νj) in
the sequel.

The scattering amplitude for this medium is a finite sum

A(r̂,d) =
ω2

4π

m∑
j=1

νju(rj)e
−iωrj ·r̂.(7)
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Moreover, in analogy to (4), the excitation field u(rij ) satisfies the Foldy-Lax equation [50, 35]

u(ril) = ui(ril) + ω2
∑
l 6=j

G(ril , rij )νiju(rij ), l = 1, ..., s(8)

where all the multiple scattering effects are included but the self field is excluded to avoid blow-up.

2. Methods and results

2.1. MIMO Born scattering. First consider the Born approximation to (7). In the Born approx-
imation (also known as Rayleigh-Gans scattering in optics), the excitation field u(rij ) is replaced by

the incident field ui(rij ). This approximation linearizes the relation between the the target strength
and the scattering amplitude and is valid for sufficiently weak or widely separated scatterers.

For the Born scattering, we define the target vector X = ν ∈ Cm and use multiple incident waves

uik(r) = eiω(z sin θk+x cos θk), k = 1, ..., p(9)

where θk is the incident angle of the k-th probe wave. Throughout the paper we consider the
single-input-multiple-output (SIMO), multiple-input-single-output (MISO) and the multiple-input-
multiple-output (MIMO) measurements in which for each incident angle θk the resulting scattering

amplitude is measured at the multiple sampling angles θ̃l, l = 1, ..., n. After normalization by
ω2/(4π), the totality of the collected data forms the measurement vector Y ∈ Cpn. The corre-
sponding sensing matrix in the linear relationship Y = ΦX has the (n(k − 1) + l, j)-entry

e−iω(zj sin θ̃l+xj cos θ̃l)uik(rj).(10)

where θ̃l is the sampling angle of the l-th sensor.
Recent breakthrough in compressed sensing has established the insight that the target can be

recovered exactly with nearly minimum sensing resources by the L1-minimization principle, called
basis pursuit (BP)

(11) min ‖X‖1 s.t. ΦX = Y

if the target is sufficiently sparse and the matrix Φ satisfies either the incoherence property or the
restricted isometry property [3, 5, 6, 7, 8, 10]. The L1-minimization problem (11) can be solved by
linear programming [2, 7, 10] or by various greedy algorithms [14, 38, 47].

In this paper we adopt the incoherence approach to analyzing the SIMO/MISO and MIMO
inverse scattering problems. Previously we have shown in [20] that suitably designed SIMO and
MIMO measurements with planar domains (in three dimensions) produce random partial Fourier
matrix as the sensing matrix which possesses a nearly optimal restricted isometry constant (RIC)
with respect to the sparsity of the target. Current compressed sensing theory predicts that (11)
yields a superior performance [4, 8]. However, with non-planar domains the SIMO/MIMO measure-
ments seem to produce a rather poor RIC. Hence we adopt the alternative approach of incoherence
in this paper. The restricted isometry approach will be taken up in Part II for multi-shot SISO
(single-input-single-output) measurements with non-planar domains for which the framework of
random partial Fourier matrix can be restored by special sampling schemes.

To the best of our knowledge the present paper is the first rigorous study of inverse scattering,
including multiple scattering, in the framework of compressed sensing. Earlier studies [9, 24, 31,
33, 41, 52] of related problems largely take the compressed sensing theory for granted and assume
(explicitly or implicitly) either the incoherence or the restricted isometry property without proof.

Let us state the perhaps simplest criterion for exact recoverability of the incoherence approach.
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Proposition 1. [16, 22] BP reconstructs perfectly any target X of sparsity

s ≤ 1

2

(
1

µ(Φ)
+ 1

)
(12)

where the sparsity s = ‖X‖0 is the number of nonzero components in X and the coherence parameter
µ(Φ) is defined as

µ(Φ) = max
i 6=j

∣∣∣∑l ΦliΦ
∗
lj

∣∣∣√∑
l |Φli|2

∑
l |Φlj |2

.

Proposition 1 implies that the lower the coherence of the sensing matrix is the more massive
the exactly recoverable target can be. Under the condition (12), a simple greedy algorithm called
Orthogonal Matching Pursuit (OMP) can provably find the minimizer of (11) in at most s iterations
[47].

To construct sensing matrices of low coherence let us define the MIMO-sensor ensemble as follows.
Let the incident angles θk, k = 1, ..., p, be independently and identically distributed according to
the probability density function f i ∈ Ch([−π, π]); for every incident angle let the sampling angles

θ̃l, l = 1, ..., n, be independently and identically distributed according to the probability density
function f s ∈ Ch([−π, π]) where h > 0 is the degree of smoothness. Define supp(f i) = {θ : f i(θ) 6=
0} and supp(f s) = {θ : f s(θ) 6= 0}. We call θ∗ ∈ [−π, π] a Blind Spot if there exists a pair r, r′ ∈ L
such that ∣∣(r− r′) · (cos θ∗, sin θ∗)

∣∣ = |r− r′|.(13)

In other words, the set of Blind Spots consists of all the angles between the x−axis and r−r′, ∀r, r′ ∈
L.

In Section 3, we prove that the following coherence bound for the sensing matrix with entries
(10).

Theorem 1. Let the sensing matrix Φ be given according to the sensor ensemble. Suppose

m ≤ δ

8
eK

2/2, δ,K > 0.(14)

Then the sensing matrix (10) satisfies the coherence bound

µ(Φ) <

(
χi +

√
2K
√
p

)(
χs +

√
2K√
n

)
(15)

with probability greater than (1− δ)2 where in general χi (resp. χs) satisfies the bound

χi ≤ ct(1 + ω`)−1/2‖f i‖t,∞,(16)

resp. χs ≤ ct(1 + ω`)−1/2‖f s‖t,∞,(17)

where ‖ · ‖t,∞ is the Hölder norm of order t > 1/2 and the constant ct depends only on t. If,
however, supp(f i) (resp. supp(f s)) does not contains any Blind Spot, then χi (resp. χs) satisfies
the bound

χi ≤ ch(1 + ω`)−h‖f i‖h,∞,(18)

resp. χs ≤ ch(1 + ω`)−h‖f s‖h,∞, ‖f i‖h,∞ =
∑
|k|≤h

∥∥∥∥ dkdθk f i
∥∥∥∥
∞

(19)

where the constant ch depends only on h.

4



Remark 1. Theorem 1 along with Proposition 1 then imply that any target of sparsity up to

s ≤ 1

2
+

1

2

(
χi +

√
2K
√
p

)−1(
χs +

√
2K√
n

)−1
(20)

can be exactly recovered by BP.
If ω` is sufficiently large (which is the high frequency limit referred to in the title), the dominant

term on the right hand side of (20) is
√
np

4K2
(21)

in view of (16)-(19).
Note that the high frequency limit for the Helmholtz equation is different from that for the

Schrödigner equation. The high frequency quantum scattering is essentially linear (without the
Born approximation) and can be solved by the Radon transform [34].

To improve the sparsity constraint (12), Tropp [49] develops an approach in which the recover-
ability is only probabilistic in the following ensemble of targets. Let the target ensemble consist of
target vectors with at most s non-zero entries whose phases are independently uniformly distributed
in [0, 2π] and whose support indices are independently and randomly selected from the index set
{1, 2, ...,m}.

The following theorem is a reformulation of results due to Tropp [49]. We refer the reader to
[21] for the derivation of Proposition 2.

Proposition 2. Assume the matrix Φ has all unit columns. Let X be drawn from the target
ensemble. Assume that

µ2(Φ)s ≤
(

8 ln
m

τ

)−1
, τ ∈ (0, 1)(22)

and that for q ≥ 1

3

(
q ln s

2 ln m
τ

)1/2

+
s

m
‖Φ‖22 ≤

1

4e1/4
.(23)

Then X is the unique solution of BP with probability 1− 2τ − s−q. Here ‖Φ‖2 denotes the spectral
norm of Φ.

Remark 2. When the matrix Φ has all unit elements, as in (10), the condition (23) becomes

3

(
q ln s

2 ln m
τ

)1/2

+
s

mρ
‖Φ‖22 ≤

1

4e1/4
(24)

where ρ = #rows in Φ.

Proposition 2 calls for the control of the spectral norm of Φ, in addition to µ(Φ), in order to
relax the sparsity constraint from (12) to (22).

In Section 4 we prove the following spectral norm bound.

Theorem 2. Under the assumptions of Theorem 1 the matrix Φ has full rank and its spectral norm
satisfies the bound

‖Φ‖22 ≤ 2m(25)

with probability greater than(
1− c1

√
np− 1

m

)n(n−1)p(p−1)
, n, p ≥ 2(26)
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for some constant c1 > 0.
In the SIMO case p = 1 we have

‖Φ‖22 ≤ 2m(27)

with probability larger than (
1− c1

√
n− 1

m

)n(n−1)
, n ≥ 2.(28)

Remark 3. The probability bounds (26) and (28) are probably far from being optimal. For np� m,
a lower bound for (26) would be

1− c1n(n− 1)p(p− 1)

√
np− 1

m

which requires m� (np)5 to be close to unity.
When this is violated, we have to rely on Theorem 1 and Proposition 1 which together guarantee

recovery with probability greater than (1− δ)2 but with a higher sensor-to-target ratio.

Now we are ready to prove the main result for inverse Born scattering.

Theorem 3. Let the sensors and the target be drawn randomly from the sensor and target en-
sembles, respectively, and consider the sensing matrix Φ of the entries defined by (9)-(10). If (14)
holds, then the targets of sparsity up to

s <
(

8 ln
m

ε

)−1(
χi +

√
2K
√
p

)−2(
χs +

√
2K√
n

)−2
(29)

can be recovered by BP with probability greater than(1− c1

√
np− 1

m

)n(n−1)p(p−1)
− 2δ

(1− 2τ − s−q
)
, n ≥ 2, p ≥ 2(30)

for some constant c1 > 0 where, for pn� s, q can be chosen as

q =
lnm− ln ε

72e1/2 ln s
.

In the SIMO case the probability bound (30) becomes(1− c1

√
n− 1

m

)n(n−1)
− 2δ

(1− 2τ − s−q
)
, n ≥ 2.(31)

Remark 4. Our results can be extended to the case that the sampling angles are not independent
of the incident angles by adjusting the probability (26) (and hence (30) and (31)) in the spectral

norm bound. An important example is the multistatic data matrix with θ̃j = −θj , j = 1, ..., n. Such
a setting is employed in the well known and widely used MIMO imaging scheme called MUSIC
(standing for MUltiple-SIgnal-Classification) with p = n [11, 45] (see the Conclusion).

Previously in [21], we have applied the compressed sensing methodology to imaging with the multi-
static data matrix under the paraxial approximation and the assumption that the point scatterers
lie on a transverse plane.
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Proof. First, the coherence estimate (15) and the sparsity constraint (29) implies (22).
Now the norm bound (25) implies (23) if

3

(
q ln s

2 ln m
τ

)1/2

+
2s

np
≤ 1

4e1/4
, q > 1.(32)

Hence for np� s we can choose q in (23) to be

q =
lnm− ln τ

72
√
e ln s

.

Since Theorems 1 and 2 hold simultaneously with probability greater than(
1− c1

√
np− 1

m

)n(n−1)p(p−1)
− 2δ, p, n ≥ 2

and since the target ensemble is independent of the sensor ensemble we have the bound (30) for
the probability of exact recovery. The proof for the SIMO case is the same.

This completes the proof of Theorem 3.
�

2.2. SIMO/MISO exact inverse scattering. Next we turn to the exact inverse scattering (7)-
(8) which takes into account all the multiple scattering effects. As the previous simulation shows
[21], multiple scattering can severely degrade the performance of the imaging method based on the
Born approximation.

Consider both the SIMO measurement with p = 1 and the MISO measurement with n = 1. Note
that in the MISO measurement, various plane waves are incident upon the scatterers one at a time
and the corresponding scattering amplitudes are sampled at a fixed direction. By the reciprocity
of wave propagation in a time-invariant medium, reversing the incident and scattered waves and
interchanging their roles leave the scattering amplitude unchanged,

A(r̂,d) = A(−d,−r̂)

(see Appendix A for a proof). Therefore, the SIMO and MISO cases are equivalent to each other.
Hereafter we will restrict our attention to the SIMO case. To this end, we will work with the

alternative definition of the target vector X = (νju(rj)) ∈ Cm. The reason for this is that the
problem then has the appearance of linear system

Y = ΦX(33)

where the sensing matrix Φ has the entries

Φlj = e−iω(zj sin θ̃l+xj cos θ̃l)(34)

and is independent of the incident field. We then apply Theorem 3 with p = 1 and sufficiently
large n to recover X with high probability. To recover ν from X, we observe that as long as
u(rij ) 6= 0, ∀j, the support of ν is the same as that of X. Indeed, the target strength ν = (νj) ∈ Cm
can be recovered exactly by solving the system of nonlinear equations on the target support as
follows.

Define the illumination and full field vectors at the locations of the scatterers:

U i = (ui(ri1), ..., ui(ris))
T ∈ Cs

U = (u(ri1), ..., u(ris))
T ∈ Cs.

Let G be the s× s matrix

G = [(1− δjl)G(rij , ril)]
7



and V the diagonal matrix

V = diag(νi1 , ..., νis).

The Foldy-Lax equation (8) can be written as

U = U i + ω2GVU(35)

from which we obtain

U =
(
I− ω2GV

)−1
U i(36)

and

X = VU = V
(
I− ω2GV

)−1
U i(37)

provided that ω−2 is not an eigenvalue of GV. The excitation field then determines the scattering
amplitude by (7) which yields the (nonlinear) system

Y = ΦX = ΦV
(
I− ω2GV

)−1
U i(38)

where the sensing matrix entries are given by (34).

Proposition 3. Suppose

ω−2 is not an eigenvalue of the matrix GV(39)

and

U i is not orthogonal to any row vector of
(
I− ω2GV

)−1
.(40)

Then the solution V of (37) is given by

V = diag

[
X

ω2GX + U i

]
(41)

where the division is in the entry-wise sense (Hadamard product). In this case, supp(V) = supp(X).

Proof. Note that

V
(
I− ω2GV

)−1
=
(
I− ω2VG

)−1 V.
Hence eq. (37) can be written as

X =
(
I− ω2VG

)−1 VU i

or equivalently (
I− ω2VG

)
X = VU i.(42)

Solving (42) for the diagonal matrix V entry-by-entry, we obtain (41) which is well-defined if

ω2GX + U i contains no zero component.(43)

Since

ω2GX + U i =
(
I− ω2GV

)−1
U i = U

(43) follows from (40).
�

Corollary 1. Condition (43) holds and hence (41) is well-defined if

ω2‖GV‖ < 1/2(44)

where ‖·‖ equals the maximum of the absolute row sums of the matrix corresponding to the operator
norm on L∞.
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Proof. Clearly U i + ω2GX contains no zero entry if

ω2‖GX‖ < 1(45)

since every component of U i has modulus one. As

‖GX‖ = ‖GV
(
I− ω2GV

)−1
U i‖

(45) follows from (44). �

Theorem 4. Suppose p = 1, (14), (39) and (40) hold. Let X be a BP solution for the system (33)
with the matrix entries (34) according to Theorem 3. The formula (41) recovers exactly the target
of sparsity

s <
(

8 ln
m

ε

)−1(
χs +

√
2K√
n

)−2
(46)

with probability at least as in (31) and χs satisfies the bound (17) or (19) depending on whether
supp(f s) contains a Blind Spot or not.

Remark 5. The resonance frequency violating (39) is related to the transmission eigenvalue for
continuous media where an analogous non-resonance condition is also needed to ensure the existence
and uniqueness of the solution to the inverse scattering problem [12, 36].

If 1 is an eigenvalue of ω2GV, the existence of solution for (35) requires that U i be orthogonal to
the eigenspace of ω2GV corresponding to 1. Then other physical constraints (such as the minimum
energy solution) need to be taken into account in order to obtain a unique solution.

The simplest example for resonance is this: Two point scatterers have the strengths νi1 , νi2 such
that sign(νi1) = sign(νi2) = sign(G∗(ri1 , ri2)). Then

GV =

[
0 |νi1G(ri1 , ri2)|

|νi2G(ri1 , ri2)| 0

]
is real and symmetric and has the positive eigenvalue

√
|νi1νi2 ||G(ri1 , ri2)|. The resonance frequency

is |νi1νi2 |−1/4|G(ri1 , ri2)|−1/2 in this case.

Remark 6. In view of (36), (40) means that U has no zero component. In other words, the target
is not shadowed by itself in any way.

Since the negation of (40) is an algebraic constraint, (40) are satisfied almost surely in the target
ensemble under (39).

2.3. Stability w.r.t. errors. Here we consider the situation where the measurement or model
errors are present. In the former case, the data may be contaminated by noise. In the latter case,
the errors may be due to, for instance, the fact that the targets are slightly off the grid. In this
case the target vector X does not represent the true targets exactly due to model mismatch and is
only the best approximation given the model. In either case, the data vector can be written as

Y = ΦX + E(47)

where E represents the errors. In the case of measurement noise, E is independent of the targets
while in the case of model mismatch, E depends explicitly on the targets.

Since A(r̂,d) is an analytic function of both r̂ and d and hence for the given noisy data, in
general no solution exists to the inverse scattering problem. Even if a solution does exist, it does
not depend continuously on the measured data in any reasonable norm.
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To deal with the problem of ill-posedness we consider, instead of the Tikhonov regularization,
the L1-regularization

min
Z

1

2
‖Y −ΦZ‖22 + λ‖Z‖1(48)

where λ is the Lagrangian multiplier to be given below. This is the Lagrangian form of the basis
pursuit denoising (BPDN) [3, 10] and the lasso in the statistics literature [46, 18]. Let X̂ be the
minimizer of (48).

The starting point of our analysis is the following result, due to Tropp [48], concerning the error
bound and the recoverability of the target support in the presence of noise.

Proposition 4. [48] Assume that Φ has all unit columns and that ‖E‖2 ≤ ε.
Suppose µ(Φ)s ≤ 1/3. Then the minimizer X̂ of (48) with λ = 2ε is unique and its support is

contained in supp(X). Moreover,

‖X̂ −X‖∞ ≤
(

3 +
√

3/2
)
ε.(49)

Remark 7. When the matrix Φ has all unit entries, as in (34), and the error term satisfies

‖E‖2 ≤ n1/2ε, then (49) holds with λ = 2nε.

Define the reconstruction of V to be

V̂ = diag

[
X̂

U i + ω2GX̂

]
(50)

in analogy to (41).
Using Proposition 4 we derive an error bound and a sufficient condition under which the support

of the reconstruction is exactly the same as the original.

Theorem 5. Suppose ‖E‖2 ≤ εn1/2 and let X̂ be the solution to (48) with λ = 2εn. Assume

µ(Φ)s ≤ 1/3(51)

and

ω2‖GV‖ <
1− (3 +

√
3/2)ε‖G‖

2− (3 +
√

3/2)ε‖G‖

(
<

1

2

)
.(52)

Then (50) is well-defined and satisfies the error bound:

‖V − V̂‖ ≤
2
(
1 + ω2‖G‖‖V‖

)
(3 +

√
3/2)ε

b0(b0 − ω2(3 +
√

3/2)ε‖G‖)
, b0 ≡

1− 2ω2‖GV‖
1− ω2‖GV‖

.(53)

Moreover, supp(V̂) = supp(X̂) ⊂ supp(X). On the other hand, if

ω2‖GV‖ <
1− (3 +

√
3/2)ε‖V−1‖

2− (3 +
√

3/2)ε‖V−1‖
(54)

then supp(X̂) = supp(X). Therefore under (52) and (54), supp(V̂) = supp(V), i.e. the support of
the target is perfectly recovered.

The proof of Theorem 5 is given in Section 5.

Remark 8. Condition (51) is slightly stronger than (12) and hence the OMP algorithm can be
used to solve (48) [48].

Condition (52), (54) and (44) all say in various ways that the scatterers are either weak or far
apart.
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Figure 2. SIMO (left) and MISO (right) measurements with single point source
(left) and single point sensor (right), respectively.

2.4. Three dimensions. Here we consider the extension of the coherence bound, Theorem 1, to
the three dimensional setting. The main point here is to demonstrate the decoherence effect due
to the extra dimension. For simplicity, we will not consider the improved performance as a result
of avoiding Blind Spots.

Instead of a square lattice, the computational domain is a cubic lattice of spacing `. Each side
of the cubic lattice has m1/3 grid points. In three dimensions, the scattering amplitude has the
same expression (7), except that the sampling direction r̂ = (α̃, β̃, γ̃) are parametrized by two polar

angles θ̃, φ̃ as

α̃ = cos θ̃ cos φ̃, β̃ = cos θ̃ sin φ̃, γ̃ = sin θ̃(55)

Theorem 6. Let the sensing matrix Φ be given according to the sensor ensemble. Suppose (14)
holds for some constants δ and K and suppose f i, f s ∈ C1. Then the sensing matrix (10) satisfies
the coherence bound

µ(Φ) <

(
χi +

√
2K
√
p

)(
χs +

√
2K√
n

)
(56)

with probability greater than (1− δ)2 where in general χi (resp. χs) satisfies the bound

χi ≤ c(1 + ω`)−1‖f i‖1,∞
(
resp. χs ≤ c(1 + ω`)−1‖f i‖1,∞

)
.(57)

Consequently, the asymptotic behavior (21) sets in faster in three dimensions than in two di-
mension in general.

Instead of measuring the scattering amplitudes, one could measure the scattered field at a set
of sampling points and reconstruct the targets from the measurement data. Likewise the incident
wave may be a spherical wave emitted from a point source instead of a plane wave from far field.
This is the measurement with point sources or sensors. We will focus on the SIMO/MISO settings
and discuss both the two and three dimensional cases.

First consider the simple setting with one point sensor at a fixed location measuring the scattered
fields due to multiple incident plane waves (Figure 2, right) emitted one at a time. This is a MISO
measurement with one fixed point sensor. By the input-output reciprocity (Appendix A), this is

11



equivalent to the SIMO measurement of measuring multiple scattering amplitudes due to one point
source in near field (Figure 2, left). Hence it suffices to analyze the SIMO case.

Analogous to (7), the scattering amplitude in the direction r̂ is given by

A(r̂, ui) =
ω2

4π

m∑
j=1

G(rj , r0)νje
−iωrj ·r̂, ui(r) = G(r, r0)(58)

where G is the Green function including the multiple scattering effects, i.e.

G(r, r0) = G(r, r0) + ω2
m∑
j=1

νjG(rj , r0)G(r, rj), r 6= rk, k = 0, ...,m(59)

G(rk, r0) = G(rk, r0) + ω2
∑
j 6=k

νjG(rj , r0)G(rk, rj), k = 1, ...,m(60)

analogous to the Foldy-Lax equation (8). Define the target vector X = (Xj) ∈ Cm

Xj = G(rj , r0)νj ,

the data vector Y = (Yk) ∈ Cn

Yk =
4π

ω2
A(r̂k)

where r̂k = (cos θ̃k, sin θ̃k), k = 1, ..., n are the incident directions. Then we have Y = ΦX where
the sensing matrix Φ = [Φkj ] is exactly as in (34).

We can solve this problem exactly as in Section 2.2 by first finding X and then setting

νj =
Xj

G(rj , r0)

=
Xj

G(rj , r0) + ω2
∑m

l=1XlG(r0, rl)

where we have used (59). In the noisy case (47), we proceed as before and set

νj =
X̂j

G(rj , r0) + ω2
∑m

l=1 X̂lG(r0, rl)
.

In other words, Theorems 4 and 5 can be immediately generalized to this setting (one point source
or one point sensor).

3. Proof of Theorem 1: Coherence bound

Proof. Denote r̂j = (cos θ̃j , sin θ̃j),dk = (cos θk, sin θk).
The pairwise coherence has the form

1

pn

∣∣∣∣∣∣
p∑

k=1

eiωdk·(r−r′) ·
n∑
j=1

eiωr̂j ·(r−r
′)

∣∣∣∣∣∣(61)

where r, r′ are two distinct points in the lattice L. Note that the two summations in (61) are of
the same type.

Consider the first summation over k = 1, ..., p. Let

Pk = cos (ωdk · (r− r′)), Qk = sin (ωdk · (r− r′))

and

Sp =

p∑
k=1

Pk, Tp =

p∑
k=1

Qk.

12



Then the summation can be bounded by∣∣∣∣∣
p∑

k=1

eiωdk·(r−r′)

∣∣∣∣∣ ≤√|Sp − ESp|2 + |Tp − ETp|2 +
√
|ESp|2 + |ETp|2(62)

We recall the Hoeffding inequality [25].

Proposition 5. Let P1, ..., Pp be independent random variables. Assume that Pl ∈ [al, bl], l = 1, ..., p
almost surely. Then we have

P [|Sp − ESp| ≥ pt] ≤ 2 exp

[
− 2p2t2∑p

l=1(bl − al)2

]
(63)

for all positive values of t.

We apply the Hoeffding inequality to both Sp and Tp. To this end, we have bl−al = 2,∀l = 1, ..., p.
Set

t = K/
√
p, K > 0.

Then we obtain

P
[
p−1 |Sp − ESp| ≥ K/

√
p
]
≤ 2e−K

2/2(64)

P
[
p−1 |Tp − ETp| ≥ K/

√
p
]
≤ 2e−K

2/2.(65)

Note that the quantities Sp, Tp depend on r−r′ = (xi−xj , zi−zj) but they possess the symmetry:
Sp(r− r′) = Sp(r

′ − r), Tp(r− r′) = −Tp(r′ − r). Furthermore, a moment of reflection reveals that
thanks to the square symmetry of the lattice there are at most m− 1 different values |Sp| and |Tp|
among the m(m− 1)/2 pairs of (r, r′).

We use (64)-(65) and the union bound to obtain

P
[
max
i 6=j

p−1 |Sp − ESp| ≥ K/
√
p

]
≤ 2(m− 1) · e−K2/2

P
[
max
i 6=j

p−1 |Tp − ETp| ≥ K/
√
p

]
≤ 2(m− 1) · e−K2/2

where the factor 4m is due to the structure of square lattice.
Hence, by (62)

P

[
max
i 6=j

p−1

∣∣∣∣∣
p∑

k=1

eiωdk·(r−r′) − E

[
p∑

k=1

eiωdk·(r−r′)

]∣∣∣∣∣ < √2K/
√
p

]
> (1− 2(m− 1)e−K

2/2)2.(66)

Similarly we have for the second summation in (61)

P

max
i 6=j

n−1

∣∣∣∣∣∣
n∑
j=1

eiωr̂j ·(r−r
′) − E

 n∑
j=1

eiωr̂j ·(r−r
′)

∣∣∣∣∣∣ < √2K/
√
n

 > (1− 2(m− 1)e−K
2/2
)2
.(67)

By (14) the right hand side of (66)-(67) is greater than (1− δ)2.
Consider E

[∑p
k=1 e

iωdk·(r−r′)
]
. The same analysis below applies equally well to E

[∑n
j=1 e

iωr̂j ·(r−r′)
]
.

If f i is the uniform distribution over [−π, π] or [−π/2, π/2] then

E

[
p∑

k=1

eiωdk·(r−r′)

]
= pJ0(ω|r− r′|)

where J0 is the zeroth order Bessel function. In general, the exact expression is not available but
we are concerned only with the asymptotic for ω|r− r′| � 1.
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The Bessel function has the asymptotic

J0(ωr) =

√
2

πωr

{
cos (ωr − π/4) +O((ωr)−1)

}
, ωr � 1.(68)

That is, for ω`� 1 there exists a constant c > 0 such that

J0(ω|r− r′|) < c√
ω`
, ∀r, r′ ∈ L, r 6= r′(69)

In general,

1

p
E

[
p∑

k=1

eiωdk·(r−r′)

]
=

∫ 2π

0
eiωd·(r−r

′)f i(θ)dθ, d = (cos θ, sin θ)(70)

which is the Herglotz wave function with kernel f i in two dimensions. By assumption on f i (70) is
a finite sum of integrals of the form ∫ b

a
eiωd·(r−r

′)f i(θ)dθ(71)

with f i 6= 0 in (a, b) whose asymptotic for ω` � 1 can be analyzed by the method of stationary
phase (Theorem XI. 14 and XI. 15 of [43]).

Proposition 6. Let gr,r′(θ) = d · (r− r′)/|r− r′| which is in C∞([−π, π]), ∀r, r′ ∈ L.

(i) Suppose d
dθgr,r′(θ) 6= 0,∀θ ∈ [a, b],∀r, r′ ∈ L. Then for all f i ∈ Ch0 ([a, b])∣∣∣∣∫ eiω|r−r

′|gr,r′ (θ)f i(θ)dθ

∣∣∣∣ ≤ ch(1 + ω|r− r′|)−h‖f i‖h,∞(72)

for some constant ch independent of f i. Moreover, since {gr,r′ : r, r′ ∈ L} is a compact subset of

Ch+1([a, b]), the constant ch can be chosen uniformly for all r, r′ ∈ L.

(ii) Suppose d
dθgr,r′(θ) vanishes at θ∗ ∈ (a, b). Since d2

dθ2
gr,r′(θ∗) 6= 0, there exists a constant

ct, t > 1/2 such that∣∣∣∣∫ eiω|r−r
′|gr,r′ (θ)f i(θ)dθ

∣∣∣∣ ≤ ct(1 + ω|r− r′|)−1/2‖f i‖t,∞(73)

where the constant ct is independent of r, r′ ∈ L.

Note that the condition

d

dθ
gr,r′(θ) 6= 0, θ ∈ [a, b], ∀r, r′ ∈ L

is the same as saying that (a, b) does not contain any Blind Spot. Combining the estimates for

χi =
∣∣∣∫ [eiωd·(r−r′)] f i(θ)dθ∣∣∣ , χs =

∣∣∣∣∫ [eiωd̃·(r−r′)] f sdθ̃∣∣∣∣ ,
using (66)-(67) and the identity

UV = (U − Ū)(V − V̄ ) + Ū(V − V̄ ) + V̄ (U − Ū) + Ū V̄

we obtain (15) with probability greater than (1− δ)2.
�
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4. Proof of Theorem 2: Spectral norm bound

Proof. For the proof, it suffices to show that the matrix Φ satisfies

‖ 1

m
ΦΦ∗ − Inp‖2 < 1(74)

where Inp is the np × np identity matrix with the corresponding probability bound (26). By the
Gershgorin circle theorem, (74) would in turn follow from

µ (Φ∗) <
1

np− 1
(75)

since the diagonal elements of ΦΦ∗/m are unity.
The pairwise coherence amounts to calculating the expression

np

m

∣∣∣∣∣
m∑
l=1

ΦjlΦ
∗
li

∣∣∣∣∣ =
1

m

∣∣∣∣∣
m∑
l=1

e−iω(zl sin θ+xl cos θ)eiω(zl sin θ
′+xl cos θ

′)eiω(zl sin θ+xl cos θ)e−iω(zl sin θ
′+xl cos θ

′)

∣∣∣∣∣
Summing over rl, l = 1, ...,m results in finite geometric series in the longitudinal and transverse
coordinates since they are equally spaced. We obtain

np

m

∣∣∣∣∣
m∑
l=1

ΦjlΦ
∗
li

∣∣∣∣∣ =
1

m

∣∣∣∣∣eiω`(cos θ
′−cos θ+cos θ̃−cos θ̃′)

√
m/2 − e−iω(cos θ′−cos θ+cos θ̃−cos θ̃′)

√
m/2

eiω`(cos θ′−cos θ+cos θ̃−cos θ̃′) − 1

∣∣∣∣∣
×

∣∣∣∣∣eiω`(sin θ
′−sin θ+sin θ̃−sin θ̃)

√
m/2 − e−iω(sin θ′−sin θ+sin θ̃−sin θ̃′)

√
m/2

eiω`(sin θ′−sin θ+sin θ̃−sin θ̃′) − 1

∣∣∣∣∣ .(76)

Using the identity |1− eiφ| = 2| sin (φ/2)| we then obtain

np

m

∣∣∣∣∣
m∑
l=1

ΦjlΦ
∗
li

∣∣∣∣∣ =
1

m

∣∣∣sin [ω`(cos θ′ − cos θ + cos θ̃ − cos θ̃′)
√
m/2

]∣∣∣∣∣∣sin [ω`(cos θ′ − cos θ + cos θ̃ − cos θ̃′)/2
]∣∣∣(77)

×

∣∣∣sin [ω`(sin θ′ − sin θ + sin θ̃ − sin θ̃′)
√
m/2

]∣∣∣∣∣∣sin [ω`(sin θ′ − sin θ + sin θ̃ − sin θ̃′)/2
]∣∣∣

Since θ, θ′ are independently and identically distributed according to f i, the sine and cosine of these
variables have the density functions

gi1(t) =
1√

1− t2
f i(arccos t) and gi2(t) =

1√
1− t2

f i(arcsin t),

respectively. Similarly the sine and cosine of θ̃, θ̃′ have the density functions

gs1(t) =
1√

1− t2
f s(arccos t) and gs2(t) =

1√
1− t2

f s(arcsin t),

respectively.
Hence the random variables

Z1 = ω`(cos θ′ − cos θ + cos θ̃ − cos θ̃′)/2 ∈ [−2ω`, 2ω`]

Z2 = ω`(sin θ′ − sin θ + sin θ̃ − sin θ̃′)/2 ∈ [−2ω`, 2ω`]

have the density function

fZi =
1

ω`
(gii ∗ gii ∗ gsi ∗ gsi )(

2z

ω`
), i = 1, 2.(78)
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Since g ∗ g ∗ g ∗ g is bounded in [−4, 4], we have

‖fZi‖∞ ≤
c0
ω`
, ω`� 1, i = 1, 2.

for some constant c0 > 0.
Define

ζ = min
θ,θ′,θ̃,θ̃′

min
k∈Z
{|Z1 − πk|, |Z2 − πk|}(79)

and note

sin ζ >
2ζ

π
, ζ ∈ (0, π/2).

Hence the probability that {ζ > b} for small b > 0 is larger than

(1− c1b)n(n−1)p(p−1)

where the power n(n − 1)p(p − 1) accounts for the number of different pairs of random variables
involved in (79).

By the choice

b =

√
np− 1

m

we deduce that

µ (Φ∗) <
1

mb2
=

1

np− 1

with probability larger than (
1− c1

√
np− 1

m

)n(n−1)p(p−1)
In the SIMO case p = 1, (79) becomes

ζ = min
θ̃,θ̃′

min
k∈Z
{|Z1 − πk|, |Z2 − πk|} .(80)

Hence the probability that {ζ > b} for small b > 0 is larger than

(1− c1b)n(n−1)

With

b =

√
n− 1

m

it follows that

µ (Φ∗) <
1

mb2
=

1

np− 1

with probability larger than (
1− c1

√
n− 1

m

)n(n−1)
.

�
16



5. Proof of Theorem 5: Stability

Next, we give an estimate for the smallest component of the excitation field vector U = (1 −
ω2GV)−1U i.

Proposition 7. If

ω2‖GV‖ < 1/2(81)

then ∥∥∥∥ 1

(I− ω2GV)−1 U i

∥∥∥∥
∞
≤ 1− ω2‖GV‖

1− 2ω2‖GV‖
≡ 1

b0
.(82)

Here for any vector V , V −1 denotes the vector whose entries are the reciprocal of those of V .

Proof. We write (
I− ω2GV

)−1
U i = U i � (1⊕R)

with

R = (U i)−1 �
(
ω2GVU i + (ω2GV)2U i + ...

)
which converges under (81). Here � and ⊕ denote the entrywise (Hadamard) product and sum,
respectively, of two vectors. Hence∥∥∥∥ 1

(I− ω2GV)−1 U i

∥∥∥∥
∞
≤
∥∥∥∥ 1

U i � (1⊕R)

∥∥∥∥
∞
≤ 1

1− ‖R‖∞
.(83)

We also have

‖R‖∞ ≤
(
ω2‖GV‖+ ω4‖GV‖2 + ...

)
=

ω2‖GV‖
1− ω2‖GV‖

.(84)

Substituting (84) into (83) we obtain the claimed bound (82). �

From the Foldy-Lax equation (36) and (82) we have the following lower bound on the excitation
field vector U ∥∥U−1∥∥∞ ≤ 1/b0(85)

and hence b0 ≤ |u(rij )|,∀j.

Corollary 2. Suppose µ(Φ)s ≤ 1/3 and

b0 >
(

3 +
√

3/2
)
ε‖V−1‖.(86)

Then supp(X̂) = supp(X).

Proof. This follows immediately from the fact

min
j
|Xj | = min

j
|νiju(rij )| ≥

b0
‖V−1‖

> (3 +
√

3/2)ε

and Proposition 4. �

Proposition 8. The vector U i + ω2GX̂ contains no zero entry if ω2‖GX̂‖∞ < 1. In particular,

this is true for the minimizer X̂ of Proposition 4 under the additional assumption

b0 > ω2(3 +
√

3/2)ε‖G‖.(87)

In this case, supp(V̂) = supp(X̂).
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Proof. The following calculation is straightforward

‖GX̂ −GX‖∞ ≤ ‖G‖‖X̂ −X‖∞ ≤ (3 +
√

3/2)ε‖G‖.(88)

Moreover, since

GX = GV(I− ω2GV)−1U i

we have the estimate

‖GX‖∞ ≤
‖GV‖

1− ω2‖GV‖
.(89)

Hence

ω2‖GX̂‖∞ ≤ ω2‖GX‖∞ + ω2‖GX̂ −GX‖∞

≤ ω2‖GV‖
1− ω2‖GV‖

+ ω2(3 +
√

3/2)ε‖G‖

= 1− b0 + ω2(3 +
√

3/2)ε‖G‖ < 1(90)

under the additional condition (87). �

The proof of Theorem 5 can now be completed as follows.

Proof. First of all, (52) is equivalent to (87) and by Proposition 8 the formula (50) is well-defined.
Subtracting (41) from (50) we can estimate as follows:

‖V − V̂‖ =

∥∥∥∥∥U i � (X − X̂) + ω2(X − X̂)�GX − ω2X �G(X − X̂)

(U i + ω2GX̂)(U i + ω2GX)

∥∥∥∥∥
≤

(
1 + ω2‖GX‖∞

)
‖X − X̂‖∞ + ω2‖X‖∞‖GX −GX̂‖∞

1− ω2‖GX̂‖∞
× ‖U−1‖∞

where we have used the identity

U = ω2GX + U i.(91)

By (81) and (89) we find that

ω2‖GX‖∞ < 1(92)

And, since X = (νju(rj)),

‖X‖∞ ≤ ‖V‖‖U‖∞.
This, (85), (88) and Proposition 4 lead to the bound

‖V − V̂‖ ≤
(2 + ω2‖G‖‖V‖‖U‖∞)(3 +

√
3/2)ε

b0(b0 − ω2(3 +
√

3/2)ε‖G‖)
.(93)

In view of (91) and (89) we have the following bound

‖U‖∞ ≤ 1 + ω2‖GX‖∞ ≤ 1

1− ω2‖GV‖
< 2.(94)

The claimed result (53) now follows from (93) and (94).

Since (54) is equivalent with (86) it follows from Corollary 2, Propositions 8 and 3 that supp(V̂) =
supp(V). �
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6. Proof of Theorem 6

Let d = (α, β, γ) be parameterized by the angles θ, φ as

α = cos θ cosφ, β = cos θ sinφ, γ = sin θ.(95)

The pairwise coherence has the form

1

pn

p∑
k=1

eiω(αk,βk,γk)·(r−r′)
n∑
j=1

eiω(α̃j ,β̃j ,γ̃j)·(r−r′)(96)

where (αk, βk, γk), k = 1, ..., p and (α̃j , β̃j , γ̃j), j = 1, ..., n are independently and identically dis-
tributed in the unit sphere according to f i(θ, φ) and f s(θ, φ), respectively.

The main difference between two and three dimensions is in evaluating the expectation of

p−1
∑p

k=1 e
iω(αk,βk,γk)·(r−r′) and n−1

∑n
j=1 e

iω(α̃j ,β̃j ,γ̃j)·(r−r′) which amounts to calculating the in-
tegrals ∫ π/2

−π/2
dθf i1(θ + θ0) cos θ exp

[
iω|r− r′| sin θ

]
(97) ∫ π/2

−π/2
dθf s1(θ + θ0) cos θ exp

[
iω|r− r′| sin θ

]
(98)

for some θ0 depending on r− r′ where f i1 and f s1 are the marginal density functions

f i1(θ) =

∫ π

−π
dφf i(θ, φ)

f s1(θ) =

∫ π

−π
dφf s(θ, φ)

If f i1 = f s1 = 1/π, the integrals (97) and (98) become

2 sin (ω|r− r′|)
ω|r− r′|

= O(
1

ω`
), ω`� 1.

For the general case, integrating by parts with (97) and (98) produces

i

ω|r− r′|

[
f i1(θ + θ0)e

iω|r−r′| sin θ
∣∣∣π/2
−π/2

−
∫ π/2

−π/2
eiω|r−r

′| sin θ d

dθ
f i1(θ + θ0)dθ

]
(99)

i

ω|r− r′|

[
f s1(θ + θ0)e

iω|r−r′| sin θ
∣∣∣π/2
−π/2

−
∫ π/2

−π/2
eiω|r−r

′| sin θ d

dθ
f s1(θ + θ0)dθ

]
(100)

from which we obtain the bound∣∣∣∣∣
∫ π/2

−π/2
dθf i1(θ + θ0) cos θ exp

[
iω|r− r′| sin θ

]∣∣∣∣∣ ≤ c

1 + ω`
‖f i‖1,∞(101) ∣∣∣∣∣

∫ π/2

−π/2
dθf s1(θ + θ0) cos θ exp

[
iω|r− r′| sin θ

]∣∣∣∣∣ ≤ c

1 + ω`
‖f s‖1,∞.(102)
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7. Conclusion

We have analyzed the SIMO/MISO and MIMO inverse scattering problems by compressed sens-
ing theory to shed new light on this problem with distinguished history [12, 29, 34, 43]. We have
obtained several main results: Theorem 3 concerns the recoverability by L1 minimization with the
MIMO measurement under the Born approximation, Theorem 4 addresses the recoverability by
L1 minimization with the SIMO/MISO measurement including multiple scattering and Theorem
5 asserts stability to measurement or model errors for weak or widely separated scatterers under a
stronger sparsity constraint.

A main limitation to our approach is the assumption of finite (albeit high) dimensional targets.
Also, the reconstruction succeeds only probabilistically. These limitations are intrinsic to the
current formulation of the compressed sensing theory which is still evolving and in this regard the
present paper is only a first step in the new direction.

On the other hand, the compressed sensing approach is constructive and treats the uniqueness
and the reconstruction in a unified way. Indeed, the main advantage of this approach is an explicit
and efficient method (i.e. the Basis Pursuit with the SIMO/MISO or MIMO sensing matrix) for
reconstructing the scatterers from the scattering amplitude. Moverover, the aperture can be rather
arbitrary and the dimension of measurement can be as low as comparable to the target sparsity
(up to a log (m)-factor).

It may be worthwhile to compare our imaging method with the MUSIC algorithm which employs
multiple sensors to collect the n × n multistatic response data matrix where n is the number of
transmitters/receivers [11, 45]. When the measurement is carried out in the far field, the (l, j)-
entry of the response matrix is the measured scattering amplitude for the sampling direction l
and the incident direction j. It is not known if MUSIC can recover the target support exactly for
nonlinear inverse scattering. Only the case for the Born approximation has been shown capable
of exact recovery of the target support in the absence of noise [26] (see the corrected argument
in Theorem 4.1, [27]). And the estimate for the required dimension of the measurement for the
exact recovery is hardly optimal. This result should be compared to Theorem 3 with p = n and
θj = −θ̃j , j = 1, ..., n, in particular the sparsity constraint (29) for compressed sensing versus the
necessary condition n > s for MUSIC. This represents a significant reduction in the number of
sensors when the sparsity of the target vector is large.

In a separate paper [19] we propose novel multi-shot single-input-single-output (SISO) com-
pressive imaging methods and demonstrate their superior performances including the capability of
imaging extended targets. We also present in [19] numerical comparative study of the respective
performances of the SIMO/MIMO and multi-shot SISO schemes.
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Appendix A. Input-output reciprocity

More generally, consider the Helmholtz equation with a source

∆u(r) + ω2(1 + ν(r))u(r) = −f(r)

which can be solved by using the Green function G as

u(r) =

∫
G(r, r′)f(r′)dr′.

By slight abuse of notation, we shall write the solution as

u = Gf
where G stands also for the corresponding propagator.

Because the incident wave is governed by

∆ui(r) + ω2ui(r) = −f(r)

we can write

u(r) = −G
[
∆ui + ω2ui

]
(r)

= G
[
−(∆ + ω2(1 + ν))ui + ω2νui

]
(r)

= ui(r) + ω2G
[
νui
]

(r).

Hence the scattered wave us = u− ui can be expressed as

us(r) = ω2

∫
G(r, r′)ν(r′)ui(r′)dr′(103)

which is the reciprocal representation to (4).
For point scatterers, (103) becomes

us(r) = ω2
m∑
j=1

νjG(r, rj)u
i(rj), r 6= rk, k = 1, ...,m.(104)

Substituting the Foldy-Lax equation

G(r, rj) = G(r, rj) + ω2
∑
k 6=j

νkG(rj , rk)G(r, rk), r 6= rj , j = 1, ...,m(105)
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in (104) we obtain

us(r) = ω2
m∑
j=1

νju
i(rj)G(r, rj) + ω4

m∑
j=1

∑
k 6=j

νjνkG(rj , rk)u
i(rj)G(r, rj)

which can be rewritten as

us(r) =

m∑
j=1

m∑
k=1

δj,kω
2νku

i(rk)G(r, rj) + ω4
m∑
j=1

∑
k 6=j

νjνkG(rj , rk)u
i(rk)G(r, rj)

=
m∑
j=1

m∑
k=1

[
δj,kω

2νk + (1− δj,k)ω4νjνkG(rj , rk)
]
ui(rk)G(r, rj)(106)

(see [32, 31] for a similar, but slightly erroneous, expression).
To obtain the alternative expression for the scattering amplitude, let r→∞ in (106) and extract

the plane wave spectrum by the Sommerfeld integral representation

H
(1)
0 (ω|r|) =

1

π

∫
eiω(|z|γ(α)+xα)

dα

γ(α)
(107)

with

γ(α) =

{ √
1− α2, |α| < 1

i
√
α2 − 1, |α| > 1

for d = 2 or the Weyl representation formula for the Green function

−e
iω|r|

4π|r|
=
−iω
8π2

∫
dαdβ

γ
e[iω(αx+βy+γ|z|)](108)

where

γ =
√

1− α2 − β2, α2 + β2 ≤ 1

γ = i
√
α2 + β2 − 1, α2 + β2 > 1,

for d = 3 [1]. The scattering amplitude in the direction r̂ is given by

A(r̂, ui) =
1

4π

m∑
j=1

m∑
k=1

[
δj,kω

2νk + (1− δj,k)ω4νjνkG(rj , rk)
]
ui(rk)e

−iωr̂·rj(109)

where ui is not necessarily a plane wave.
In the case of a plane wave incidence (2) we observe the symmetry between the incident and

scattered plane waves in (109). Therefore, reversing and interchanging roles of the incident and
scattered waves do not affect the scattering amplitude, i.e. A(r̂,d) = A(−d,−r̂). This is the
reciprocity referred to in Section 2.2.

In the case of a point sensor located at r0 and an incident plane wave, the measurement data is
given by

us(r0) =

m∑
j=1

m∑
k=1

[
δj,kω

2νk + (1− δj,k)ω4νijνkG(rj , rk)
]
eiωd·rkG(r0, rj)(110)

whose right hand side can also be interpreted as the scattering amplitude in the direction −d when
a point source is placed at r0, i.e. A(−d, ui) with ui(r) = G(r, r0). This is the reciprocity referred
to in Section 2.4.
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